

## Copyright © 2020 PHILIPPINE STATISTICS AUTHORITY Regional Statistical Services Office Cordillera Administrative Region

All rights reserved.

Published by the
Philippine Statistics Authority
Regional Statistical Services Office
Cordillera Administrative Region
3/F CTLL Building, 141 Abanao Extension
Rizal Monument, 2600 Baguio City
Philippines.

ISSN: 2718-9368 (Print Edition)
ISSN: 2718-9376 (Electronic Edition)

The 2020 Cordillera Administrative Region (CAR) Regional Compendium of Environment Statistics (RCES) is a publication prepared by by the Statistical Operations and Coordination Division of the Philippine Statistics Authority - Regional Statistical Services Office Cordillera Administrative Region (PSA - RSSO CAR). This edition is the first and is planned to be updated every two years.

## The Editorial Board

**EDITOR-IN-CHIEF** 

ALDRIN FEDERICO R. BAHIT JR. **Chief Statistical Specialist** 

ASSISTANT EDITOR-IN-CHIEF

JEANNIEL I. BARCAYAN Statistical Analyst

STAFF/CONTRIBUTORS

**Supervising Statistical Specialist** CAMILLE CARLA U. BELTRAN JOCELYN O. TAYABAN Senior Statistical Specialist **BETINA JOY V. BERMILLO** Statistical Specialist II MA. GINA V. DE GUZMAN Statistical Specialist II WARREN B. MAMANTEO Statistical Specialist II **BROZYBROZ Y. MATEO** Statistical Specialist II **CHERRY D. KIAW Assistant Statistician** JEZL R. BOADO **Information Officer I** KAY ANGELIKA M. CASTRO **TSA Project Staff ENRA Project Staff** STEPHEN DALE C. ESTIGOY

LAYOUT ARTIST

WINSKY B. SALISA **Information Systems Analyst** 

> **ADVISER** VILLAFE P. ALIBUYOG **Regional Director**

### TERMS OF USE OF PSA PUBLICATIONS

The PSA-RSSO CAR reserves its exclusive right to reproduce all its publications in whatever form. • Any part of this publication should not be reproduced, recopied, lent or repackaged for other parties for any commercial purposes without written permission from the PSA-RSSO CAR. • Any part of this publication may only be reproduced for internal use of the recipient/ customer company. • Should any portion of the data in this publication are to be included in a report/article, the source of the data, the title of the publication and the PSA-RSSO CAR as publisher should always be cited. • Any information derived from the manipulation of data contained in the publication will no longer be the responsibility of PSA-RSSO CAR.

> The Cordillera Administrative Region (CAR) Regional Compendium of Environment Statistics (RCES) is available for purchase in printed and electronic format (PDF in CD ROM).

For details, please contact us at (6374) 442-7449 or at socd\_psacar@yahoo.com.

## **Foreword**

The 2020 Cordillera Administrative Region (CAR) Regional Compendium of Environment Statistics (2020 RCES) aims to provide policymakers, program implementers and regional stakeholders with information for strategic planning, policy, program and project formulation for the management and protection of the environment and responding to environment-related issues.

The 2020 RCES is a compilation of statistics gathered from various agencies and from different statistical publications. The statistics presented in this publication are organized using the Framework for the Development of Environment Statistics (FDES) approved by the United Nations Statistical Commission in 2013 (UN FDES 2013). The framework is focused on the core set of environment statistics categorized into six components, namely: (1) environmental conditions and quality; (2) environmental resources and their use; (3) residuals; (4) extreme events and disasters; (5) human settlements and environmental health; and (6) environment protection, management and engagement.

The PSA expresses its gratitude to the Technical Working Group on Environment Statistics created by the Regional Statistics Committee (RSC), and all the data source agencies for the assistance and cooperation in the preparation of this publication. We hope our collaboration continues in our future efforts to provide timely and relevant statistics on the environment for our clients and stakeholders.

**CLAIRE DENNIS S. MAPA, Ph.D.** 

Undersecretary National Statistician and Civil Registrar General Philippine Statistics Authority

# Message

The 2020 Cordillera Administrative Region (CAR) Regional Compendium of Environment Statistics (RCES) is a publication prepared by the Philippine Statistics Authority – Regional Statistical Services Office CAR (PSA-RSSO CAR) based on the United Nations Framework for the Development of Environment Statistics (FDES) 2013.

The UN FDES 2013 is a flexible, multi-purpose conceptual and statistical framework that provides systematic approach in the collection and compilation of environment statistics. RSSO CAR continues to be responsive and commit to deliver relevant and reliable statistics on environmental accounts and statistics. This effort is another milestone for RSSO CAR and the Cordillera region.

We commend Regional Director Villafe P. Alibuyog of PSA-RSSO CAR for releasing another developmental output. We thank the Technical Working Group on Environment Statistics of the CAR Regional Statistics Committee (RSC) for the unwavering support to come up with this publication.

It is hoped that this document will serve as a valuable reference in the formulation and evaluation of environmental, as well as the socioeconomic programs and policies of the Cordillera region.

**ROSALINDA P. BAUTISTA** 

**Assistant Secretary Deputy National Statistician** Philippine Statistics Authority

# Message

The Philippine Statistics Authority presents the 2020 Cordillera Administrative Region (CAR) Regional Compendium of Environment Statistics (RCES), the compilation of environment statistics in CAR following the United Nations Framework for the Development of Environment Statistics (FDES) 2013.

This publication provides information on the issues and aspects of environment that are relevant for policy analysis, decision-making and mainstreaming environmental concerns and cross-cutting issues such as climate change. It is focused on the discussion on the status of the environment; stocks and inventories of environmental resources; impacts of the daily activities of humans to the environment; disasters and other extreme events; the environment where we live in; and the initiatives to preserve, maintain, enhance and/or protect the environment.

Congratulations to Regional Director Villafe P. Alibuyog of PSA-RSSO CAR, and the staff of the Statistical Operations and Coordination Division (SOCD) for another output that is a result of their developmental programs in the region. This is a fruit of their firm commitment to deliver statistical products that clients and stakeholders will use for development planning not only for the environment but also for elevating the quality of life of Cordillerans as a whole.

Our sincerest gratitude to all the members of the Technical Working Group on Environment Statistics of the CAR Regional Statistics Committee (RSC) for providing assistance to the technical staff of RSSO CAR and supplying the required data for the compendium. With the strong support of our colleagues from different agencies and institutions in the region, we are expecting more fruits of our collaboration ahead.

VIVIAN R. ILARINA

Assistant National Statistician Macroeconomic Accounts Services Philippine Statistics Authority

# Acknowledgment

The 2020 Cordillera Administrative Region (CAR) Regional Compendium of Environment Statistics was prepared by the Statistical Operations and Coordination Division (SOCD) of Philippine Statistics Authority – Regional Statistical Services Office Cordillera Administrative Region (PSA-RSSO CAR).

The SOCD headed by Aldrin Federico R. Bahit, Jr. provided the legwork in the compilation of the compendium of environment statistics. The SOCD Technical Staff who provided technical support to the completion of the project were Camille Carla U. Beltran, Jocelyn O. Tayaban, Ma. Gina V. De Guzman, Betina Joy V. Bermillo, Warren B. Mamanteo, Brozybroz Y. Mateo, Cherry K. Dionisio, Jezl R. Boado, Kay Angelika M. Castro and Stephen Dale C. Estigoy, Jeanniel I. Barcayan led the compilation of statistics and the preparation of the publication manuscript. Winsky B. Salisa designed the cover and the graphics for the publication and led the typesetting process.

The Regional Technical Working Group (TWG) on Environment Statistics was chaired by Department of Environment and Natural Resources (DENR) represented by Cirilo M. Gali. The members of the TWG were: Myla Amogan and Mclister A. Abellera of Environmental Management Bureau (EMB); Vivian T. Romero of Mines and Geosciences Bureau (MGB); Minda S. Odsey and Winston P. Manongyao of Watershed and Water Resources Research Development and Extension Center (WWRRDEC); Charles A. Picpican and Ryan Raville of Department of Agriculture (DA); Hezel Lalugay, Laura Marie Benigno, Hector M. de Guzman, and Mary P. Tauli of Bureau of Fisheries and Aquatic Resources (BFAR); Dr. Jennifer Joyce R. Pira and Jarvis Solano of Department of Health (DOH); Department of Science and Technology-Philippine Atmospheric, Geophysical and Astronomical Services Administration (DOST-PAGASA); Jeanette R. Baldemor of Department of Transportation-Land Transportation Office (DOTr-LTO); Leonarda B. Lingayo of the National Economic and Development Authority (NEDA); Franckie Cortez and Romeo A. Jacaban Jr. of Office of Civil Defense (OCD); Georgina S. Saldo and Bernadette N. Brillantes of Baguio City Planning and Development Office; and, Rosemary G. Badival of Benguet Provincial Planning and Development Office.

This publication could not have been prepared without the support of our National Statistician and Civil Registry General, Undersecretary Claire Dennis S. Mapa; former Undersecretary, Dr. Lisa Grace S. Bersales; Assistant Secretary and Deputy National Statistician Rosalinda P. Bautista; and the full confidence given by Assistant National Statistician Vivian R. Ilarina of the Macroeconomic Accounts Service (MAS). The staff of Environment and Natural Resource Accounts Division (ENRAD) of MAS led by Virginia M. Bathan also offered their technical expertise. We extend our appreciation to all involved.

## **VILLAFE P. ALIBUYOG**

Vice-chairperson, CAR Regional Statistics Committee Regional Director, PSA-RSSO CAR

### **LIST OF DATA SOURCES**

## City Environment and Parks Management Office, Baguio City

## **Department of Environment and Natural Resources**

Department of Environment and Natural Resources - Cordillera Administrative Region

Environmental Management Bureau

Forest Management Bureau

Mines and Geosciences Bureau

National Mapping and Resource Information Authority

## Department of Health - Cordillera Administrative Region

## **Department of Science and Technology**

Philippine Atmospheric, Geophysical and Astronomical Services Administration

Department of Transportation - Cordillera Administrative Region

Office of Civil Defense - Cordillera Administrative Region

## **Philippine Statistics Authority**

Philippine Statistics Authority - Cordillera Administrative Region

## **Table of Contents**

|                     |                                                   | Page |
|---------------------|---------------------------------------------------|------|
| Foreword            |                                                   | iii  |
| Messages            |                                                   |      |
| Acknowledgemen      | t                                                 |      |
| List of Data Source | rs ·                                              | iv   |
| Table of Contents   |                                                   | V    |
| List of Figures     |                                                   | vi   |
| List of Tables      |                                                   | vii  |
| List of Acronyms a  | nd Abbreviations                                  | xi   |
| Introduction        |                                                   | 1    |
| The 2013 Framewo    | ork for the Development of Environment Statistics | 3    |
| Component 1         | Environmental Conditions and Quality              | 57   |
| Component 2         | Environmental Resources and Their Use             | 67   |
| Component 3         | Residuals                                         | 143  |
| Component 4         | Extreme Events and Disasters                      | 155  |
| Component 5         | Human Settlements and Environmental Health        | 163  |
| Component 6         | Environment Protection, Management and Engagement | 195  |
| Annex               |                                                   | 220  |
| Glossary of Terms   |                                                   | 231  |
| References          |                                                   | 253  |

## **List of Figures**

| Figure No.   | Title                                                                                                  | Page |
|--------------|--------------------------------------------------------------------------------------------------------|------|
| Component 1: | Environmental Conditions                                                                               |      |
| 1.1          | Average Monthly Rainfall, Baguio City Monitoring Station: 1981-2010                                    | 8    |
| 1.2          | Annual Average Rainfall, Baguio Monitoring Station: 2008-2018                                          | 8    |
| 1.3          | Monthly Maximum, Minimum and Mean Temperature Recorded in Baguio City<br>Monitoring Station: 2008-2018 | 9    |
| 1.4          | Distribution of Areas Susceptible to Erosion by Class, CAR: 2019                                       | 10   |
| 1.5          | Land Cover, CAR: 2015                                                                                  | 11   |
| 1.6          | Area of Natural Forests by Province, CAR: 2015                                                         | 12   |
| 1.7          | Forest Disturbance, CAR: 2008-2018                                                                     | 12   |
| 1.8          | Concentration Levels of Particulate Matter 10 (PM10), Baguio City: 2011-2018                           | 13   |
| 1.9          | Class of Selected Fresh Water Bodies in CAR: 2018                                                      | 14   |
| Component 2: | Environmental Resources and Their Use                                                                  |      |
| 2.1          | Percentage Distribution of Metallic Minerals Reserve, CAR: 2018                                        | 68   |
| 2.2          | Volume of Production of Gold and Silver, CAR: 2008-2018                                                | 68   |
| 2.3          | Fish Production by Type of Fishery, CAR: 2008-2018                                                     | 69   |
| 2.4          | Area Planted/Harvested and Volume of Production of Palay in CAR: 2008-2018                             | 70   |
| 2.5          | Area Planted/Harvested and Volume of Production for Yellow Corn and White Corn, CAR: 2008-2018         | 71   |
| 2.6          | Livestock Inventory by Species, CAR: 2008-2018                                                         | 72   |
| 2.7          | Percentage Distribution of Total Water Allocated by Use, CAR: 2018                                     | 73   |
| Component 3: | Residuals                                                                                              |      |
| 3.1          | Estimated Nitrogen Oxide Emission from All Sources, CAR: 2011-2018                                     | 144  |
| 3.2          | Estimated Sulfur Oxide Emission from All Sources, CAR: 2011-2018                                       | 144  |
| 3.3          | Volume of Wastewater Collected and Treated, Domestic Water, Baguio City: 2008-2018                     | 145  |
| Component 4: | Extreme Events and Disasters                                                                           |      |
| Component 5: | Human Settlements and Environmental Health                                                             |      |
| 5.1          | Distribution of Households by Source of Drinking Water Supply, CAR: 2010                               | 164  |
| 5.2          | Distribution of Households by Toilet Facility Used, CAR: 2010                                          | 164  |
| 5.3          | Distribution of Registered Vehicles by Type of Vehicle, CAR, 2018                                      | 165  |
| 5.4          | Number of Cases of Diarrheas and Pneumonia, CAR: 2008-2018                                             | 166  |
| 5.5          | Number of Cases and Deaths from Dengue, CAR: 2008-2018                                                 | 167  |
|              | <u> </u>                                                                                               |      |

## **List of Tables**

| Table No. | Title                                                                                                                                      | Page |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1         | Tier 1, 2 and 3 Statistics in FDES and RCES by Component                                                                                   |      |
| Component | t 1: Environmental Conditions                                                                                                              |      |
| 1.1       | Climatological Normals by Month, Baguio City, 1981 to 2010                                                                                 | 18   |
| 1.2       | Climatological Extremes, Baguio City, as of 2010                                                                                           | 19   |
| 1.3       | Annual Amount of Rainfall by Month, Baguio City Monitoring Station, 2008 to 2018                                                           | 20   |
| 1.4       | Annual Temperature Data by Month, Baguio City Monitoring Station, 2008 to 2018                                                             | 21   |
| 1.5       | List of Watershed Forest Reserves in CAR, 2018                                                                                             | 23   |
| 1.6       | List of Priority Watershed in CAR, as of 2013                                                                                              | 24   |
| 1.7       | Areas Susceptible to Erosion by Class by Province, CAR, as of 2019                                                                         | 25   |
| 1.8       | Land Cover Classification, CAR, 2015                                                                                                       | 26   |
| 1.9.1a    | List of Known Flora in Balbalasang Balbalan National Park, as of 2019                                                                      | 27   |
| 1.9.1b    | List of Known Fauna in Balbalasang Balbalan National Park, as of 2019                                                                      | 32   |
| 1.9.2a    | List of Known Flora in Marcos Highway National Park, as of 2019                                                                            | 34   |
| 1.9.2b    | List of Known Fauna in Marcos Highway National Park, as of 2019                                                                            | 37   |
| 1.9.3a    | List of Known Flora in Upper Agno River National Park, as of 2019                                                                          | 38   |
| 1.9.3b    | List of Known Fauna in Upper Agno River National Park, as of 2019                                                                          | 41   |
| 1.9.4a    | List of Known Flora in Mt. Data National Park, as of 2019                                                                                  | 42   |
| 1.9.4b    | List of Known Fauna in Mt. Data National Park, as of 2019                                                                                  | 45   |
| 1.10      | List and Status of Protected Areas in CAR, as of 2013                                                                                      | 46   |
| 1.11      | List of Proclaimed Protected Areas Under the National Integrated Protected Areas System (NIPAS), as of 2012                                | 47   |
| 1.12      | Area of Natural Forest by Province, 2015                                                                                                   | 48   |
| 1.13      | Characteristics of Rivers and Streams, as of 2019                                                                                          | 48   |
| 1.14      | Characterization of Soil by Type and by Province, 2015                                                                                     | 54   |
| 1.15      | Rock Types by Province, 2015                                                                                                               | 54   |
| 1.16.1    | Annual Average Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) Concentration of Selected Fresh Water Bodies in CAR, 2011 to 2018 | 55   |
| 1.16.2    | Acidity/Alkalinity/pH of Selected Fresh Water Bodies in CAR, 2011 to 2018                                                                  | 56   |
| 1.16.3    | Total Suspendid Solid of Selected Fresh Water Bodies in CAR, 2011 to 2018                                                                  | 58   |
| 1.16.4    | Fecal Coliform of Selected Fresh Water Bodies in CAR, 2011 to 2018                                                                         | 60   |
| 1.16.5    | Temperature of Selected Fresh Water Bodies in CAR, 2011 to 2018                                                                            | 62   |
| 1.17      | Concentration Levels of Particulate Matter 10 (PM10), 2011 to 2018                                                                         | 63   |
| Component | t 2: Environmental Resources and Their Use                                                                                                 |      |
| 2.1       | Stock of Commercially Recoverable Gold and Copper Resources, Ectraction and Average Grade, CAR, 2008 to 2018                               | 76   |
| 2.2       | Nonmetallic Minerals Resource/Reserve Inventory, CAR, 2008 to 2018                                                                         | 76   |
| 2.3       | Mineral Production, 2008 to 2018                                                                                                           | 77   |
| 2.4       | Forest Disturbance by Province, 2008 to 2018                                                                                               | 79   |
| 2.5       | Stocks of Timber Resources, CAR, 2008 to 2018                                                                                              | 79   |

| 2.6     | Aquaculture: Volume of Production by Type, Environment, Species and Geolocation, 2008 to 2018                                                              | 80  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.7     | Inland Municipal Fisheries: Volume of Production by Species and Geolocation, 2008 to 2018                                                                  | 94  |
| 2.8     | Palay and Corn: Area Harvested by Ecosystem/Croptype and Geolocation, 2008 to 2018                                                                         | 101 |
| 2.9     | Other Crops: Area Planted/Harvested by Crop and Geolocation, 2008 to 2018                                                                                  | 103 |
| 2.10    | Palay and Corn: Volume of Production by Ecosystem/Croptype and Geolocation, 2008 to 2018                                                                   | 115 |
| 2.11    | Other Crops: Volume of Production by Crop and Geolocation, 2008 to 2018                                                                                    | 117 |
| 2.12    | Palay: Estimated Area Applied Receiving and Area Harvested Receiving Inorganic Fertilizer, CAR, 2008 to 2014                                               | 129 |
| 2.13    | Corn: Estimated Area Applied Receiving and Area Harvested Receiving Inorganic Fertilizer, CAR, 2008 to 2014                                                | 129 |
| 2.14    | Palay: Average Quantity Applied of Inorganic Fertilizer by Grade, CAR, 2008 to 2014                                                                        | 129 |
| 2.15    | Corn: Average Quantity Applied of Inorganic Fertilizer by Grade, CAR, 2008 to 2014                                                                         | 129 |
| 2.16    | Livestock: Inventory by Animal Type, Farm Type, Provinces, 2008 to 2018                                                                                    | 130 |
| 2.17.1  | Poultry: Chicken Inventory by Animal Type, Farm Type, Provinces, 2008 to 2018                                                                              | 134 |
| 2.17.2  | Poultry: Duck Inventory by Animal Type, Farm Type, Provinces, 2008 to 2018                                                                                 | 137 |
| 2.18    | Volume of Evaporation by Month, Benguet State University Monitoring Station, 2008 to 2018                                                                  | 139 |
| 2.19    | Summary of Water Permit Grants by Water Source, Type and Use, 2008 to 2018                                                                                 | 140 |
| Compone | nt 3: Residuals                                                                                                                                            |     |
| 3.1     | Estimated Nitrogen Oxide Emission (NOx) from All Sources, 2011 to 2018                                                                                     | 150 |
| 3.2     | Estimated Sulfur Oxide Emission (SOx) from All Sources, 2011 to 2018                                                                                       | 150 |
| 3.3     | Volume of Wastewater Collected, Domestic Water, Baguio City, 2008 to 2018                                                                                  | 150 |
| 3.4     | Volume of Wastewater Treated, Domestic Water, Baguio City, 2008 to 2018                                                                                    | 151 |
| 3.5     | Amount of Generated Hazardous Waste by Type of Hazardous Waste, 2015 to 2018                                                                               | 152 |
| 3.6     | Amount of Treated Hazardous Waste by Type of Hazardous Waste, 2015 to 2018                                                                                 | 152 |
| Compone | nt 4: Extreme Events and Disasters                                                                                                                         |     |
| 4.1     | Number of Tropical Cyclones, CAR: 2008-2018                                                                                                                | 160 |
| 4.2     | Estimated Cost of Damage Due to Tropical Cyclones, 2008 - 2018                                                                                             | 160 |
| Compone | nt 5: Human Settlements and Environmental Health                                                                                                           |     |
| 5.1     | Number of Households by Main Source of Water Supply for Drinking and/or Cooking of Households by Kind of Toilet Facility Used and by Region, 2000 and 2010 | 170 |
| 5.2     | Number of Households by Kind of Toilet Facility Used and by Region, 2000 and 2010                                                                          | 171 |
| 5.3.1   | Number of Motor Vehicles Registered by Type, Fuel Used, Year and Province, 2018                                                                            | 172 |
| 5.3.2   | Number of Motor Vehicles Registered by Type of Registration by Province and by Type of Vehicle, 2015 to 2018                                               | 174 |
| 5.4     | Notifiable Diseases: Reported Cases and Deaths, CAR, 2008 to 2018                                                                                          | 177 |
| 5.5     | Notifiable Water-Related Diseases and conditions, CAR, 2008 to 2018                                                                                        | 178 |
| 5.6     | Mortality due to Water-Related Diseases and Conditions by Sex and Age Group, 2015 to 2018                                                                  | 182 |

| 6.1.1  | Initial List and Values of Hazardous Air Pollutants for National Ambient Air Quality<br>Guideline for Criteria Pollutants                                                                                                                      | 200 |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.1.2  | Initial List and Values of Hazardous Air Pollutants for National Ambient Air Quality<br>Guideline for Criteria Pollutants For National Ambient Air Quality Standards for<br>Source Specific Air Pollutants from Industrial Sources/ Operations | 200 |
| 6.1.3  | Maximum Limits of Concentration of Air Pollutants at the Point of Emission with Respect to any Trade, Industry, Process, and Fuel-burning equipment or Industrial Plant                                                                        | 201 |
| 6.1.4  | Maximum Limits of Particulates in Stationary Sources In milligram per normal cubic meters (mg/Ncm)                                                                                                                                             | 202 |
| 6.1.5  | Maximum Limits for Sulfur Oxides in Stationary Sources                                                                                                                                                                                         | 202 |
| 6.1.6  | Maximum Limits for Exhaust Gas in Other Stationary Sources of Pollution, Daily and Half Hourly Average Values                                                                                                                                  | 202 |
| 6.1.7  | Maximum Limits for Exhaust Gas in Other Stationary Sources of Pollution, All the Average Values Over the Sample Period of a Minimum of 4 Hours and Maximum of 8 Hours                                                                          | 203 |
| 6.1.8  | Emission Limits for Light Duty Vehicles Type Approval (Directive 91/1441/EEC)                                                                                                                                                                  | 203 |
| 6.1.9  | Emission Limits for Light Commercial Vehicles Type Approval (Directive 93/59/EEC)                                                                                                                                                              | 203 |
| 6.1.10 | Emission Limits for Heavy Duty Vehicles Type Approval (Directive 91/542/EEC)                                                                                                                                                                   | 203 |
| 6.1.11 | Type Approval Emission Limits for Passenger Vehicles (M) and Light Duty Vehicles (N1), Euro 2                                                                                                                                                  | 204 |
| 6.1.12 | Emission Limits for Heavy Duty Vehicles Type Approval (Euro II)                                                                                                                                                                                | 204 |
| 6.1.13 | Emission Standards for Vehicles with Spark-Ignition Engines (Gasoline) Except Motorcycles                                                                                                                                                      | 204 |
| 6.1.14 | Emission Standards for Vehicles with Compression-Ignition Engines (Diesel)                                                                                                                                                                     | 205 |
| 6.1.15 | Emission Standards for Rebuilt and Imported Used Vehicles                                                                                                                                                                                      | 205 |
| 6.1.16 | Emission Limits for Motorcycle (L3) Level 1 with Effectivity Two Years after the Approval Date of this Administrative Order                                                                                                                    | 205 |
| 6.1.17 | Emission Limits for Motorcycle/Tricycle (L4)                                                                                                                                                                                                   | 205 |
| 6.1.18 | Emission Limits for Motorcycle (L3) Level 2 with Effectivity Three Years after the Effectivity of Level 1                                                                                                                                      | 206 |
| 6.1.19 | Emission Limits for Moped (L1)                                                                                                                                                                                                                 | 206 |
| 6.1.20 | Emission Limits for In-use Motorcycle/Tricycle and Moped                                                                                                                                                                                       | 206 |
| 6.1.21 | The Provisional National Ambient Air Quality Guideline Values (NAAQGV) for PM 2.5                                                                                                                                                              | 207 |
| 6.1.22 | Standard Parameters and Values for Drinking-Water Quality Standard Values for Bacteriological Quality                                                                                                                                          | 207 |
| 6.1.23 | Standard Parameters and Values for Drinking-Water Quality Standard Value for Biological Organisms                                                                                                                                              | 207 |
| 6.1.24 | Standard Parameters and Values for Drinking-Water Quality Standard Values for Physical and Chemical Quality: Health Significance                                                                                                               | 208 |
| 6.1.25 | Standard Parameters and Values for Drinking-Water Quality Standard Values for Physical and Chemical Quality: Aesthetic Quality                                                                                                                 | 209 |
| 6.1.26 | Standard Parameters and Values for Drinking-Water Quality Standard Values for Disinfectants and Disinfectant by-Products                                                                                                                       | 209 |
| 6.1.27 | Standard Parameters and Values for Drinking-Water Quality Chemicals of No Health Significance at Concentrations Normally Found in Drinking Water                                                                                               | 210 |

| 6.1.28 | Standard Parameters and Values for Drinking-Water Quality Standard Values for Radiological Constituents  | 210 |
|--------|----------------------------------------------------------------------------------------------------------|-----|
| 6.1.29 | Vehicle Emission Limit for Euro 4, and In-use Vehicle Emission Standards                                 | 211 |
| 6.1.30 | Water Quality Guidelines for Primary Parameters                                                          | 212 |
| 6.1.31 | Water Quality Guidelines for Secondary Parameters-Inorganics                                             | 212 |
| 6.1.32 | Water Quality Guidelines for Secondary Parameters-Metals (c)                                             | 213 |
| 6.1.33 | Water Quality Guidelines for Secondary Parameters-Organics (c)                                           | 213 |
| 6.1.34 | Groundwater Quality Guidelines                                                                           | 214 |
| 6.2    | List and Description of Multilateral Environmental Agreements and Other Global Environmental Conventions | 215 |

## **List of Acronyms and Abbreviations**

**BOD** Biochemical Oxygen Demand CAR Cordillera Administrative Region

CO carbon monoxide  $CO_2$ carbon dioxide cu. m. cubic meter

DA Department of Agriculture

Department of Environment and Natural Resources DENR

DO dissolved oxygen DOE Department of Energy DOH Department of Health

DOST Department of Science and Technology

DOTr Department of Transportation

**DPWH** Department of Public Works and Highways

**EMB Environmental Management Bureau** 

**ENRA Environment and Natural Resources Accounting** 

**ENRAP Environmental and Natural Resources Accounting Project** 

**FAO** Food and Agriculture Organization

Forest Management Bureau **FMB** 

**GWh** gigawatt-hour

ha hectares

**IRR** Implementing Rules and Regulations

kilogram kg

km<sup>2</sup> square kilometer

LGU Local Government Unit

liters per second lps

LTO Land Transportation Office

mcm million cubic meters mg/L milligrams per liter

mg-N/L milligrams-Nitrogen per liter Mines and Geosciences Bureau **MGB** 

millimeters mm MT metric tons

**NAMRIA** National Mapping and Resource Information Authority

**NEDA** National Economic and Development Authority

NIA **National Irrigation Authority** 

**NIPAS** National Integrated Protected Area System

nitrogen oxide NO.  $NO_2$ nitrogen dioxide

National Statistical Coordination Board **NSCB** 

**NSWMC** National Solid Waste Management Commission

**NWRB** National Water Resources Board

Оз ozone OCD Office of Civil Defense

PAGASA Philippine Atmospheric, Geophysical and Astronomical Services Administration

**PEENRA** Philippine Economic-Environment and Natural Resources Accounting

PM<sub>10</sub> particulate matter 10  $\mathsf{PM}_{\scriptscriptstyle{2.5}}$ particulate matter 2.5

ppm parts per million

PSA Philippine Statistics Authority

R.A. Republic Act

SEEA System of Environmental-Economic Accounting

SNA **System of National Accounts** 

 $SO_{x}$ sulfur oxide square meter sq.m.

microgram per normal cubic meter ug/ncm

UN **United Nations** 

UNDP **United Nations Development Programme** 

**UNFDES** United Nations Framework for the Development of Environment Statistics

**UNSD United Nations Statistics Division** 

## Introduction

The history of the compilation of environment statistics and environment accounts in the Cordillera Administrative Region (CAR) started with the initiative of the former National Statistical Coordination Board (NSCB) to compile environmental accounts through the Environment and Natural Resource Accounting Project (ENRAP) II in 1998. The "Environmental and Natural Resource Accounting: The Cordillera Experience" was published in 2001 as an output of the project with five chapters focusing on the following asset accounts: (a) forest resources; (b) mineral resources; (c) land and soil resources; (d) water resources; and a chapter on activity purpose accounts on (e) environmental degradation due to cabbage production.

The ENRAP Phase II: Institutionalization of Philippine Economic-Environment and Natural Resource Accounting (PEENRA) System implemented by the then NSCB was under the United Nations Development Programme's (UNDP) Country Programme on Integrated Environmental Management for Sustainable Development (IEMSD). The Environmental and Natural Resources Accounting (ENRA) component of the programme adopted the UN System of Integrated Environmental and Economic Accounting (1993 SEEA) framework, a satellite accounting framework of the System of National Accounts (SNA).

The environmental accounting projects of the NSCB with close collaboration of the Department of Environment and Natural Resources (DENR) paved way for the establishment of databank for environmental accounts and other environmental-related statistics as result of the compilation process.

In 2016, the Philippine Statistics Authority – Regional Statistical Services Office (RSSO) CAR attended a training on the System of Environmental-Economic Accounting (SEEA) 2012 – Central Framework. As a result of the training, RSSO CAR pursued the compilation of Asset Accounts for Land and Timber Resources during the same year covering the period 1999 to 2015. The project was followed by the preparation of Asset Accounts for Mineral Resources which began in the latter part of 2017 until December 2018 when the results of the study were disseminated. The Land and Timber Accounts were also updated in 2018 incorporating the 2015 land cover of the region released by the National Mapping and Resource Information Authority (NAMRIA).

The Training on the United Nations Framework for the Development of Environment Statistics (UN FDES) 2013 was also conducted in the region in February 2018 with resource persons from the Macroeconomic Accounts Service (MAS) – Environment and Natural Resources Accounts Division (ENRAD). Having produced the outputs on mineral accounts and the updates on land and timber accounts, this 2019, the region programmed the preparation of the Regional Compendium of Environment Statistics (RCES) following the UN FDES 2013 and the compilation of Physical Asset and Flow Accounts for Water Resources as developmental projects.

In line with this, the Regional Statistics Committee – CAR passed a resolution on its 2019 first quarter meeting entitled "Creation of the Regional Technical Working Group (TWG) on Environment Statistics" to assist the implementation and adoption of the UN FDES 2013 in the region. This will also facilitate the collection of environment statistics and the preparation of the compendium. Despite the difficulty in the data collection and standardization of terminologies, the region was able to establish the coordinating mechanism for the completion of the project. The compendium is the first of its kind in the region.

The UN FDES 2013 provides a systematic approach in the collection and compilation of environment statistics. It serves as an integration framework for data collectors and providers to optimize the utilization of their statistics in the formulation and evaluation of socioeconomic and environmental programs and policies. FDES brings to the fore the discussion on the status of the environment, stocks and inventories of resources, impact of daily activities of humans to the environment, disasters and other extreme events, the environment where we live and the initiatives to preserve, maintain, enhance and/or protect the environment.

This compendium is a compilation of the core set of environment statistics and other environment indicators based on the Basic Set of Environment Statistics of the UN FDES 2013. The Basic Set of Environment Statistics were organized into six components, namely: (1) environmental conditions and quality; (2)

environmental resourses and their use; (3) residuals; (4) extreme events and disasters; (5) human settlements and environmental health; and (6) environment protection, management and engagement. The Core Set is limited set of environment statistics that are considered high priority and are relevant to most countries.

There are 100 core set statistics identified in the FDES spread over the six components. Component 1 has 32; Component 2, 30; Component 3, 19; Component 4, four; Component 5, 12; and Component 6, three. Due to limited data, RSSO CAR compiled only 50 core set statistics. Fifteen core statistics were compiled for Component 1; fifteen for Component 2; nine for Component 3; two for Component 4; seven for Component 5; and two for Component 6.

This publication includes a glossary of terms to guide the users of this document in understanding environmental concepts and terminologies. As work on the improvement and institutionalization of FDES continues in the region, it is aimed that the coverage in upcoming editions will be expanded to compile the statistics in tiers 2 and 3, and that the publication will use terminologies that conform with internationallyaccepted definitions but are still relevant to the local situation.

Table 1: Tier 1, 2 and 3 Statistics in FDES and RCES by Component

|      | Tier   | Component<br>1 | Component 2 | Component 3 | Component<br>4 | Component 5 | Component 6 |
|------|--------|----------------|-------------|-------------|----------------|-------------|-------------|
|      | Tier 1 | 32             | 30          | 19          | 4              | 12          | 3           |
| FDES | Tier 2 | 55             | 53          | 34          | 11             | 22          | 24          |
|      | Tier 3 | 54             | 41          | 5           | 16             | 20          | 23          |
|      | Tier 1 | 15             | 15          | 9           | 2              | 7           | 2           |
| RCES | Tier 2 | 4              | 1           | 0           | 2              | 0           | 0           |
|      | Tier 3 | 2              | 0           | 0           | 0              | 0           | 0           |

Source: FDES 2013 and RCES 2020

## The 2013 Framework for the Development of Environment Statistics (FDES)<sup>1</sup>

The Framework for the Development of Environment Statistics (FDES) was first published in 1984 by the United Nations Statistics Division (UNSD). The 1984 FDES has been a useful framework for guiding countries in the development of their environment statistics programmes. It relates the components of the environment (Flora, Fauna, Atmosphere, Water Land and Soil, Mineral and Energy Resources and Human Settlements) to four information categories namely: (1) Social and economic activities and natural events; (2) Environmental impacts of activities and events; (3) Responses to environmental impacts; and, (4) Stocks and inventories.

Since its publication, there have been many scientific, political, technological, statistical, experiencebased developments and more particularly environmental concerns which suggested for the revision of the FDES. As a consequence, the United Nations Statistical Commission, at its 41st session (23-26 February 2010), endorsed a work programme and the establishment of an Expert Group for the revision of the FDES and the development of a Core Set of Environment Statistics. The forty fourth (44th) session of the Statistical Commission endorsed the revised FDES as a useful tool to adequately respond to the increasing demand for information in the follow-up to Rio+20 and the post 2015 development agenda (including Sustainable Development Goals).

The FDES is based on a conceptual foundation that considers people and their demographic, social and economic activities (the human sub-system) as integral parts of, and interacting with, the environment.

FDES 2013 is a flexible, multi-purpose conceptual and statistical framework that is comprehensive and integrative in nature and marks out the scope of environment statistics. It provides an organizing structure to guide the collection and compilation of environment statistics at the national level, bringing together data from the various relevant subject areas and sources. It is broad, comprehensive and integrative. It covers the issues and aspects of the environment that are relevant for policy analysis and decision making and it can be applied to inform about cross-cutting issues such as climate change.

It is expected to contribute significantly to improve monitoring and measurement of the environmental dimension of sustainable development and to the post-2015 development agenda. The use of the FDES 2013 in national statistical systems will enhance developments in this field of statistics, as it is both a multi-purpose and flexible tool that can be tailored to specific environmental policy concerns and priorities of the countries, as well as accommodate different levels of statistical development.

The FDES 2013 covers issues and aspects of the environment that are relevant for analysis, policy and decision making. It is designed to assist countries in the formulation of environment statistics programmes by: (i) delineating the scope of environment statistics and identifying its constituents; (ii) contributing to the assessment of data requirements, sources, availability and gaps; (iii) guiding the development of multipurpose data collection processes and databases; and (iv) assisting in the co-ordination and organization of environment statistics, given the inter-institutional nature of the domain.

It organizes environment statistics into a structure of six components (see Figure 1). The first component brings together statistics related to the conditions and quality of the environment and their change. The second component groups together statistics related to environmental resources and their use (ecosystem provisioning services, land and subsoil resources). The third component includes statistics related to the use of regulating services of the environment for the discharge of residuals from production and consumption processes. Statistics related to extreme events and disasters (both natural and technological) and their impacts are covered by the fourth component. The fifth component consists of statistics related to human settlements and environmental health. The sixth component groups statistics relevant to societal responses and economic measures aimed at protecting the environment and managing environmental resources. Environmental

<sup>&</sup>lt;sup>1</sup> Lifted from United Nations 2013 Framework for the Development of Environment Statistics (FDES)

conditions and quality (Component 1) is at the center of the FDES. The other five components have been set up based on their relationship with the central Component 1.

Each of the components is broken down into subcomponents that in turn contain relevant statistical topics. The statistical topics represent the measurable aspects of the components of the FDES taking into account the types and sources of the data needed for their description. The final level contains the actual individual environment statistics.



Figure 1. Structure of FDES 2013

The FDES lists the most important environment statistics to describe the statistical topics thus providing quidance to countries developing national environment statistics programs. The statistics included in the Basic Set are comprehensive but neither are exhaustive nor the only possible ones for assessment of the statistical topics. They should be considered a set of statistics which can assist in making decisions on priorities for statistical development. In order to do so, the Basic Set of Environment Statistics has been set up following a progression of three tiers, based on the level of relevance, availability and methodological development of the statistics.

Tier 1 is the Core Set of Environment Statistics which represents a broad consensus of opinion on the pertinence and feasibility of these statistics; as such, it is intended to foster collection, coordination and harmonization of environment statistics at the national, regional and international levels. The objective of the Core Set is to serve as an agreed, limited set of environment statistics that are of high priority and relevance to most countries.

Tier 2 includes environment statistics which are of priority and relevance to most countries but need more significant investment in time, resources or methodological development, so countries are recommended to consider producing them in the medium-term.

Tier 3 includes environment statistics which are either of less priority or require significant methodological development, so countries are recommended to consider producing them in the long-term.

The statistical topics in the FDES, and the underlying environment statistics in the Core Set of Environment Statistics and the Basic Set of Environment Statistics, can be combined and reorganized in different ways according to specific analytical needs and policy requirements e.g., climate change, energy and the environment, agriculture and environment, sustainable management of natural resources or environmental impacts of specific activities, i.e., tourism, poverty, manufacturing, etc. This is an inherent aspect of the design of the FDES as a flexible multi-purpose framework.

Compilation of environment statistics focused on a particular cross-cutting issue should commence with the understanding of the scientific background, underlying processes and cause-effect relationships. Furthermore, it is necessary to analyze and understand its relevance to the country and to particular subnational areas, productive sectors and social groups, its national policy implications and commitments, as well as the institutional aspects and the international context. The statistics for describing the selected cross-cutting issues should be organized based on a logical sequence of events that illustrate the relevant related processes. These sequences resemble the occurrence of events, according to the nature of the issue itself. In each case, the correspondence of these sequences with the FDES structure is described.





## **ENVIRONMENTAL CONDITIONS AND QUALITY**

The Cordillera Administrative Region is known to be the Watershed Cradle of North Luzon. The region has rich biodiversity and abounds with natural resources that provide services to the community. The national and subnational policymakers, program implementers and environmental managers have all been working together to preserve, sustain and further enhance the state of environment. However, the increasing demand for agricultural and industrial development and other economic activities pose a threat on the region's environment and natural resources if left unchecked and unmanaged.

Component one presents the condition and quality of environment and natural resources of the region. It includes statistics on the meteorological, hydrographical, geological, geographical, biological, and physical and chemical characteristics of the environment, and their changes over time.

The compiled statistics for Component One can be used to monitor the Sustainable Development Goals (SDGs) indicators. These include the following: Goal 2: End hunger, achieve food security and improved nutrition and promote sustainable agriculture; Goal 8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all; Goal 13: Take urgent action to combat climate change and its impacts; and Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss (Sustainable Development Knowledge Platform).

There are 32 core statistics in Component 1 of FDES. However, this publication only compiled 15 core statistics as availability is limited. Data on major ecosystems and biodiversity in the region were still unavailable in the region. Moreover, indicators used to measure air quality and waste are some of the statistics that were not yet included due to irregularity of the data collection and/or only recently adopted.

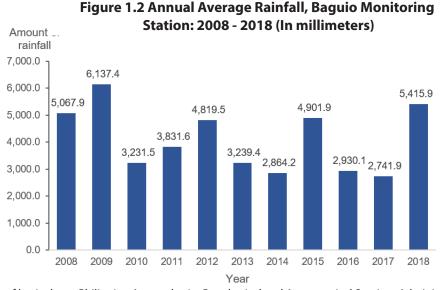
#### **Physical conditions** 1.1.

This subcomponent captures the physical aspect of the environment focusing on statistics on meteorological, hydrophysical, geological and geographical conditions, and soil characteristics. The compiled data in this subcomponent suggests the status of the region's environment. These statistics provide information to program planners and policymakers on specific measures on effective and efficient environment-related programs and/or policies.

The main sources of data for this subcomponent were the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) and the Department of Environment and Natural Resources (DENR).

## 1.1.1. Atmosphere, climate and weather

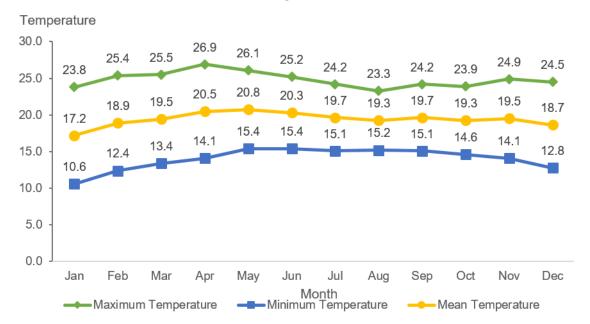
The region is known for its cool climate due to its high mean elevation. The provinces of Abra and Benguet fall within the first climatic type characterized by two distinct seasons; dry season from November to April and wet season for the rest of the year. The provinces of Apayao, Mt. Province, Ifugao and Kalinga are within the third climatic type where seasons are not pronounced but are relatively dry from November to April and wet for the rest of the year. Some parts of Apayao is covered under the second and fourth climatic type where climate has no dry season but is marked with maximum rainfall in November and December and where climate has an even distribution of rainfall throughout the year.


The average monthly rainfall based on the 1981 to 2010 data of PAGASA revealed that during the month of August received the largest amount of rainwater. Third quarter had the highest combined amount of rainfall at 2,257.8 mm, while first quarter had the lowest at 84.6 mm.

Station: 1981 - 2010 (In millimeters) Amount of rainfall 1000.0 905.0 781.9 0.008 570.9 600.0 475.8 454.3 400.0 341.1 200.0 104.1 97.4 23.4 26.2 15.2 0.0 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Dec Month

Figure 1.1 Average Monthly Rainfall, Baguio City Monitoring

Source of basic data:: Philippine Atmospheric, Geophysical and Astronomical Services Administration


From 2008 to 2018, the trend of the annual average rainfall data exhibited an erratic movement. The highest amount of rainfall was recorded in 2009 at 6,137.4 mm. The lowest amount of rainfall was recorded in 2017 at 2,741.9 mm with a sharp increase in rainfall in 2018 (5,415.9 mm) with almost twice than the previous year.



Source of basic data:: Philippine Atmospheric, Geophysical and Astronomical Services Administration

Maximum monthly temperature data ranges from 23.3 degrees Celsius to 26.9 degrees Celsius. Based on the maximum temperature, the hottest months were March, April and May. On the other hand, the minimum monthly temperature ranges from 10.6 degrees Celsius to 15.4 degrees Celsius. The coldest months were in December, January and February.

Figure 1.3 Monthly Maximum, Minimum and Mean Temperature, Baguio City Monitoring Station: 2008-2018, (In degrees Celsius)



Source of basic data:: Philippine Atmospheric, Geophysical and Astronomical Services Administration

## 1.1.2. Hydrographical characteristics

Cordillera is the only land-locked region in the Philippines and it hosts 13 major river basins with an estimated drainage area of 18,293 square kilometers; and home to 46 major proclaimed forests and watersheds. These river systems and watersheds are the sources of water for irrigating agricultural lands, for generating electricity, for the needs of various industry and other economic purposes including household activities.

## 1.1.3. Geological and geographical information

The region has six provinces – Abra, Apayao, Benguet, Ifugao, Kalinga and Mountain Province; and two cities – the chartered city of Baguio in Benguet and the component city of Tabuk in Kalinga. The region's total land area is 1,865,660 hectares comprising 6.2 percent of the total land area of the country. It has a mountainous topography characterized by towering peaks, plateaus and intermittent patches of valleys. About 71 percent of the region's land area has slopes of 30 degrees and above. 2

## 1.1.4. Soil characteristics

The region is composed of various soil types dominated by mountain soil and clay loam which indicates the land suitability for cultivation. The region comprises of 53 percent mountain soils, 17 percent clay loam, 9 percent clay, 4 percent loam and 17 percent other soil types. 3

Human activities such as land use conversion, deforestation and illegal logging, kaingin, and other unsustainable farming practices, and poor land and water management have caused the quality of soil to decline contributing to soil degradation. Food and Agriculture Organization (FAO) of the UN defined soil degradation as the change in soil health status resulting in a diminished capacity to provide goods and services.

Soil erosion is the most common type of soil degradation. Based on the data of DENR, majority of the land area of the region are susceptible in slight erosion (36%). There are also areas susceptible to moderate (32%) and severe erosion (22%).

Unclassified Erosion, 3% No Apparen Erosion, Slight Erosion, Severe Erosion. 36%

Moderate Erosion, 32%

Figure 1.4 Distribution of Areas Susceptible to Erosion by **Class, CAR: 2019** 

Source of basic data: Department of Environment and Natural Resources

#### 1.2. Land cover, ecosystem and biodiversity

This subcomponent presents the relationship of data on land cover, ecosystems and biodiversity, as well as the observed changes over time and across locations. The Food and Agriculture Organization (FAO) defined land cover as the observed (bio)physical cover of the earth's surface. It is one of the indicators of ecosystem type. Ecosystems are community of organisms which have interacting and interdependent relationship. Biodiversity, a measure of ecosystem health, is the variability among living organisms from all sources including terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part, including biodiversity within species, between species and of ecosystems. Biodiversity is a fundamental characteristic of ecosystems, while variability among ecosystems is a fundamental driver of biodiversity.

Data compiled for this subcomponent are sourced from the National Mapping and Resource Information Authority (NAMRIA) and DENR.

### 1.2.1. Land Cover

The 2015 Land Cover map of CAR is the result of the latest national mapping activity carried out by NAMRIA generated by interpreting satellite images captured from Landsat 8 with 30-meter resolution and Google Earth. The land cover classification

follows the DENR Department Memorandum Circular 2005-05: Adopting Forestry Definitions Concerning Forest Cover/Land Use and the Forest Resources Assessment (FRA) of the Food and Agriculture Organization (FAO) of the UN. The classification is aggregated into 12 categories - Closed forest, Open forest, Annual crop, Perennial crop, Wooded grassland, Shrubs, Grassland, Built-up area, Fallow, Fishpond, Barren land, and Inland water.

In 2015, forest cover of the region composed of 832,335 hectares, other wooded land covered 520,503 hectares, agricultural land covered 250,242 hectares, other natural land composed of 214,545 hectares, built-up area covered 23,809 hectares and inland water including fishpond covered 24,225 hectares.

Closed Forest Open Forest Built-up **Annual Crop** Perennial Crop Barren land Wooded grassland Grassland

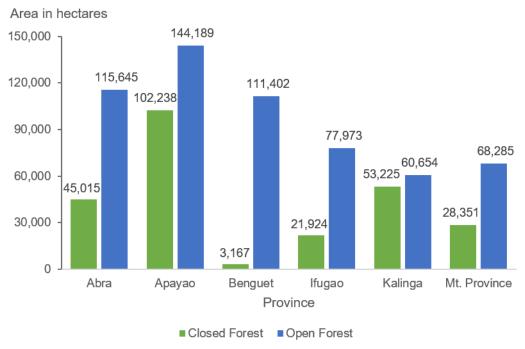
Shrubs **Inland Water** 

Figure 1.5 CAR Land Cover: 2015

Source: National Mapping and Resource Information Authority, DENR

## 1.2.2. Ecosystems and biodiversity

The region has a unique vegetation and is endowed with various varieties of flora and fauna. Biodiversity is a source of value in forest, first, that it participates directly in production such as wood, hunting, and forest amenities and in regulating production such as resilience in the face of hazards and uncertainties, and in adapting to changes. Many services rendered by the forest ecosystem often depend on biodiversity and thus reduce its value. Second, its value lies in its non-market features such as culture, landscapes, philosophical and moral issues. But its value can be generally estimated by its replacement value which could run to hundreds of billions of pesos to restore the biodiversity of Cordillera region alone. It could be sufficient to emphasize that human beings could not survive without the basic services provided by the natural ecosystems and the biodiversity that constitute them


### 1.2.3. Forests

#### 1.2.3.1. **Forest cover**

Forest cover in the region is further categorized into three types namely, (1) Closed forest, where tree formations cover a high proportion exceeding 40 percent of the ground; (2) Open forest where tree formations cover at least 10 percent and less than 40 percent; and (3) Plantation forest where forest stands are established by planting or/and seeding.

The area of natural forests is largest in the province of Apayao both in closed and open forests with 110,356 hectares and 146,808 hectares, respectively. Benguet had the smallest area of natural closed forest with 7,670 hectares while Kalinga had the smallest area of open forests with 50,042 hectares.

Figure 1.6 Area of Natural Forests by Province, CAR 2015



Source of basic data: Department of Environment and Natural Resources

#### 1.2.3.2. **Forest disturbances**

Forest disturbances, as illustrated in Figure 1.7, peaked in 2010 affecting 8,527.8 hectares of which 96.4 percent or 8,216.6 hectares were affected by forest fires. The total forest disturbances during the period registered a total of 23,920.7 hectares.

Area affected 8.527.8 9,000.0 8,000.0 7,000.0 6,000.0 5,000.0 4,525.7 4,000.0 3,031 2,724.7 2,760.6 3,000.0 2,000.0 1,273.6 1,000.0 114.7 48.8 75.1 46.6 0.0 2008 2009 2012 2013 2015 2010 2011 2014 2016 2017 2018 Year

Figure 1.7 Forest Disturbances, CAR: 2008-2018 (In hectares);

Source of basic data: Department of Environment and Natural Resources

### 1.3. **Environmental quality**

This subcomponent talks about the concentration of pollutants in the environment which comes from combined and cumulative impacts of human activities and natural processes. Statistics on environmental quality are important in monitoring the impacts of pollution to human sub-system and ecosystems.

The Air Quality Management Section and the Water Quality Management Section of the Environmental Management Bureau (EMB) served as the main sources of data for this subcomponent.

## 1.3.1. Air quality

Pursuant to RA No. 8749, or the Philippine Clean Air Act of 1999, the pollutants monitored to measure ambient air quality include pollutants at various concentrations, including but not limited to Total Suspended Particulate Matter (TSP), Particulate Matter with mass median diameter less than 25-50 μm matter (PM<sub>10</sub> and PM<sub>25</sub>), carbon monoxide (CO), sulphur dioxide (SO<sub>2</sub>), nitrogen dioxides (NO<sub>2</sub>), and Photochemical Oxidants as Ozone (O<sub>3</sub>).

The statistics compiled for this subcomponent are concentration of air pollutants, suspended solid particles, and other gases. These statistics are important to assess the effects of air quality to human and ecosystem health. The monitoring stations are strategically situated mostly in areas near the major sources of pollution to measure the air quality.

Concentration levels of PM<sub>10</sub> is the only statistics collected for this topic. Also, only one monitoring station was cited for the report. The facility at Lower Session Road reported the highest level of concentration of PM<sub>10</sub> in 2015 with 124.5 in micrograms per normal cubic meter and the lowest in 2013 with 69.3 in micrograms per normal cubic meter for the period 2011 to 2018. In 2018, the level of concentration is at 71.0 in micrograms per normal cubic meter. The reported concentration levels from 2011 to 2018 were below the guideline value of 150 micrograms per normal cubic meter which means that the air quality is generally good. There was no reported measure of  $PM_{10}$  for the year 2014.

Concentration levels 160.0 Guideline value =150 140.0 124.5 120.0 100.0 82.6 81.0 79.7 71.0 0.08 68.2 69.3 60.0 40.0 20.0 0.0 0.0 2011 2012 2013 2014 2015 2016 2017 2018 Year Source of basic data: Environmental Management Bureau - CAR

Figure 1.8 Concentration Levels of Particulate Matter 10 (PM<sub>10</sub>), Baguio City, 2011 to 2018, in micrograms per normal cubic meter

## 1.3.2. Water quality

There are 14 fresh water bodies in CAR being monitored by Environmental Management Bureau for standards of water quality. One out of the 14 water bodies was classified as Class AA (Ambulalacao Lake); six were categorized

in Class A (Abra River, Agno River, Chico River, Alenod River, Eddet River and Balili River); five belong to Class B (Pugo River, Amburayan River, Budacao River, Depanay River, and Asin Gallano River); and the remaining two were in Class C (Bued River and Ambalanga River).

The results of the 2018 monitoring reports revealed that 100 percent of the water bodies being monitored passed the water quality standards for Dissolved Oxygen (DO), however, two out of the 14 water bodies, namely Bued River and Balili River failed the standards on Biochemical Oxygen Demand (BOD).

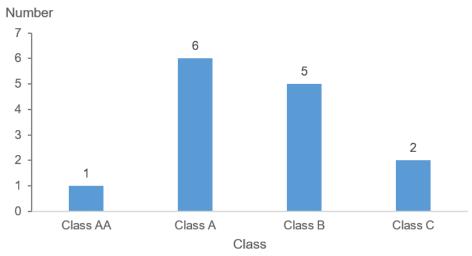



Figure 1.9 Class of Selected Fresh Water Bodies in CAR: 2018

Source of basic data: Environmental Management Bureau

Half of the monitored fresh water bodies in CAR passed both standards in DO BOD during the period covered from 2008 to 2018. These water bodies are Ambulalacao Lake, Chico River, Budacao River, Alenod River, Ambalanga River, Eddet River and Asin Gallano River, although Ambulalacao Lake and Chico River have missing data due to unavailability.

DO and BOD concentration levels are interrelated. The higher the BOD, the faster the oxygen is depleted and the lesser the oxygen is available in the water. Furthermore, low levels of dissolved oxygen may mean non-survival of organisms. Consistent and up-to- date monitoring and recording of concentration levels of various water pollutants is needed to properly assess implementation and management of programs related to the Clean Water Act.





# **STATISTICAL TABLES Environmental Conditions and Quality**

Table 1.1 **Climatological Normals By Month, Baguio City** 1981 to 2010

| Month     | Amount | No. of | Max  | Min  | Mean | Dry<br>Bulb | Wet<br>Bulb | Dew Pt. | Vapor<br>Pressure |
|-----------|--------|--------|------|------|------|-------------|-------------|---------|-------------------|
|           | (mm)   | RD     | (°C) | (°C) | (°C) | (°C)        | (°C)        | (°C)    | (mbs)             |
| January   | 15.2   | 3      | 23.3 | 12.9 | 18.1 | 17.1        | 15.5        | 14.5    | 16.5              |
| February  | 23.4   | 3      | 24.1 | 13.4 | 18.7 | 17.7        | 16.0        | 15.0    | 17.0              |
| March     | 46.0   | 5      | 25.2 | 14.5 | 19.9 | 18.9        | 17.0        | 15.9    | 18.1              |
| April     | 104.1  | 9      | 25.8 | 15.9 | 20.8 | 20.0        | 18.2        | 17.3    | 19.7              |
| May       | 341.1  | 20     | 25.0 | 16.4 | 20.7 | 19.8        | 18.4        | 17.7    | 20.2              |
| June      | 475.8  | 22     | 24.4 | 16.5 | 20.5 | 19.6        | 18.4        | 17.8    | 20.3              |
| July      | 781.9  | 26     | 23.4 | 16.3 | 19.8 | 19.0        | 18.1        | 17.6    | 20.2              |
| August    | 905.0  | 27     | 22.6 | 16.2 | 19.4 | 18.7        | 17.9        | 17.5    | 20.0              |
| September | 570.9  | 24     | 23.4 | 16.0 | 19.7 | 18.9        | 17.9        | 17.3    | 19.8              |
| October   | 454.3  | 17     | 23.9 | 15.7 | 19.8 | 19.0        | 17.8        | 17.1    | 19.6              |
| November  | 97.4   | 8      | 24.1 | 15.1 | 19.6 | 18.7        | 17.2        | 16.4    | 18.6              |
| December  | 26.2   | 4      | 23.5 | 13.7 | 18.6 | 17.7        | 16.0        | 15.0    | 17.0              |

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

Table 1.1 **Climatological Normals By Month, Baguio City** 1981 to 2010 (continued)

| Month     | Rel. Hum. | MSLP   | DIR    | SPD   | Cloud Amount |
|-----------|-----------|--------|--------|-------|--------------|
| Worth     | %         | (MBS)  | (16pt) | (mps) | (okta)       |
| January   | 85        | 1011.7 | SE     | 2     | 5            |
| February  | 84        | 1011.3 | SE     | 2     | 5            |
| March     | 83        | 1010.3 | SE     | 2     | 5            |
| April     | 84        | 1008.9 | SE     | 2     | 5            |
| May       | 88        | 1007.7 | SE     | 2     | 6            |
| June      | 89        | 1007.0 | SE     | 2     | 7            |
| July      | 92        | 1006.6 | SE     | 2     | 7            |
| August    | 93        | 1006.3 | SE     | 2     | 7            |
| September | 91        | 1007.1 | SE     | 2     | 7            |
| October   | 89        | 1008.0 | SE     | 2     | 6            |
| November  | 86        | 1009.3 | SE     | 2     | 5            |
| December  | 84        | 1011.0 | SE     | 2     | 5            |

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

Table 1.2 **Climatological Extremes, Baguio City** as of 2010

| Month     |      | Tempe      | rature |            | Temp   | erature    | Highest Wind (mps) |     |            |
|-----------|------|------------|--------|------------|--------|------------|--------------------|-----|------------|
| Month     | High | Date       | Low    | Date       | Amount | Date       | SPD                | DIR | Date       |
| January   | 26.7 | 01-31-1978 | 6.3    | 01-18-1961 | 107.4  | 01-25-2006 | 20                 | SE  | 01-25-1975 |
| February  | 28.7 | 02-10-1978 | 6.7    | 02-01-1963 | 58.2   | 02-28-1989 | 15                 | ESE | 02-13-1974 |
| March     | 30.4 | 03-15-1988 | 7.4    | 03-01-1963 | 80.6   | 03-27-2001 | 17                 | ESE | 03-28-1996 |
| April     | 30.0 | 04-28-1995 | 10.0   | 04-01-1923 | 147.7  | 04-08-1967 | 25                 | SW  | 04-25-1976 |
| May       | 29.4 | 05-09-2003 | 7.7    | 05-30-1989 | 730.3  | 05-30-1989 | 27                 | SE  | 05-02-1978 |
| June      | 28.7 | 06-03-1991 | 11.8   | 06-20-2014 | 538.4  | 06-29-2004 | 35                 | WNW | 06-27-1993 |
| July      | 27.9 | 07-04-1983 | 12.5   | 07-08-1925 | 1085.8 | 07-04-2001 | 47                 | SE  | 07-20-1974 |
| August    | 27.7 | 08-30-1988 | 12.8   | 08-12-1936 | 648.0  | 08-02-1935 | 31                 | S   | 08-07-1964 |
| September | 28.0 | 09-04-1981 | 12.6   | 09-01-1990 | 799.8  | 09-27-1911 | 38                 | S   | 09-11-1970 |
| October   | 27.7 | 10-08-1980 | 11.3   | 10-26-1913 | 994.6  | 10-14-1998 | 41                 | WNW | 10-27-1974 |
| November  | 28.2 | 11-19-1987 | 9.2    | 11-30-1989 | 698.7  | 11-05-1980 | 41                 | SE  | 11-04-1967 |
| December  | 28.2 | 12-19-1987 | 7.6    | 12-13-1991 | 149.8  | 12-04-1936 | 30                 | SSE | 12-02-2004 |

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

Table 1.3 Annual Amount of Rainfall by Month, Baguio City Monitoring Station 2008 to 2018 (in millimeters)

| Year | Jan  | Feb  | Mar   | Apr   | May   | Jun   | Jul     | Aug     | Sep     |
|------|------|------|-------|-------|-------|-------|---------|---------|---------|
| 2008 | 24.0 | 97.0 | 78.7  | 149.8 | 839.7 | 307.0 | 681.2   | 1,869.5 | 760.4   |
| 2009 | 7.2  | 64.5 | 82.9  | 407.3 | 398.5 | 810.0 | 758.4   | 1,087.7 | 516.9   |
| 2010 | Т    | Т    | 15.3  | 148.6 | 242.6 | 254.0 | 543.7   | 536.6   | 296.8   |
| 2011 | 96.0 | 13.8 | 93.4  | 11.9  | 462.5 | 529.1 | 427.5   | 1,096.3 | 619.7   |
| 2012 | 17.5 | 80.8 | 151.9 | 72.6  | 187.7 | 659.0 | 1,020.0 | 2,200.7 | 288.3   |
| 2013 | 11.4 | 26.8 | 63.6  | 70.3  | 338.7 | 232.8 | 368.2   | 1,220.4 | 590.1   |
| 2014 | -    | Т    | 5.9   | 126.3 | 213.0 | 401.7 | 444.2   | 531.9   | 985.4   |
| 2015 | 11.3 | 7.3  | 57.1  | 121.8 | 245.5 | 282.5 | 1,493.9 | 1,031.6 | 263.6   |
| 2016 | 5.2  | 4.2  | 9.4   | 62.0  | 213.3 | 176.3 | 426.8   | 955.6   | 412.1   |
| 2017 | 39.9 | 71.5 | 4.7   | 61.3  | 570.1 | 208.5 | 751.0   | 449.6   | 206.9   |
| 2018 | 15.2 | 1.2  | 5.8   | 204.0 | 283.2 | 552.6 | 1,002.5 | 1,822.6 | 1,219.6 |

Note: T means trace

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

Table 1.3 Annual Amount of Rainfall by Month, Baguio City Monitoring Station 2008 to 2018 (in millimeters)

(continued)

| Year | Oct     | Nov   | Dec   | Annual  |
|------|---------|-------|-------|---------|
| 2008 | 178.0   | 82.6  | Т     | 5,067.9 |
| 2009 | 1,981.8 | 22.2  | -     | 6,137.4 |
| 2010 | 920.1   | 226.4 | 47.4  | 3,231.5 |
| 2011 | 332.4   | 81.6  | 67.4  | 3,831.6 |
| 2012 | 72.4    | 57.8  | 10.8  | 4,819.5 |
| 2013 | 240.0   | 53.5  | 23.6  | 3,239.4 |
| 2014 | 107.1   | 39.2  | 9.5   | 2,864.2 |
| 2015 | 1,212.2 | 8.0   | 167.1 | 4,901.9 |
| 2016 | 583.2   |       | 82.0  | 2,930.1 |
| 2017 | 230.0   | 120.0 | 28.4  | 2,741.9 |
| 2018 | 268.6   | 17.8  | 22.8  | 5,415.9 |

Note: T means trace

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

Table 1.4 Annual Temperature Data by Month, Baguio City Monitoring Station 2008 to 2018 (in degrees Celsius)

| Levels              | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maxium Temperature  | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maxium Temperature  | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Temperature | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean Temperature    | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | Maxium Temperature Minimum Temperature Mean Temperature Minimum Temperature Minimum Temperature Minimum Temperature Minimum Temperature Maxium Temperature Maxium Temperature Minimum Temperature Mean Temperature Minimum Temperature | Maxium Temperature23.3Minimum Temperature14.1Mean Temperature18.7Maxium Temperature22.7Minimum Temperature17.8Maxium Temperature17.8Maxium Temperature23.3Minimum Temperature12.9Mean Temperature18.1Maxium Temperature12.3Mean Temperature17.6Maxium Temperature17.6Maxium Temperature12.9Mean Temperature18.4Maxium Temperature18.4Maxium Temperature18.4Maxium Temperature12.4Mean Temperature18.1Maxium Temperature10.6Mean Temperature15.8Maxium Temperature15.8Minimum Temperature12.1Mean Temperature12.1Mean Temperature12.1Mean Temperature14.0Maxium Temperature14.0Maxium Temperature13.1Mean Temperature13.1Mean Temperature13.1Mean Temperature17.9Maxium Temperature17.9Maxium Temperature14.9 | Maxium Temperature         23.3         22.4           Minimum Temperature         14.1         13.7           Mean Temperature         18.7         18.1           Maxium Temperature         22.7         24.2           Minimum Temperature         12.9         14.8           Mean Temperature         17.8         19.5           Maxium Temperature         23.3         24.9           Minimum Temperature         12.9         13.8           Mean Temperature         18.1         19.4           Maxium Temperature         22.8         23.6           Minimum Temperature         12.3         12.6           Mean Temperature         17.6         18.1           Maxium Temperature         12.9         13.2           Mean Temperature         12.9         13.2           Mean Temperature         18.4         18.5           Maxium Temperature         12.4         13.9           Mean Temperature         12.4         13.9           Mean Temperature         10.6         12.4           Maxium Temperature         15.8         17.4           Maxium Temperature         17.0         17.6           Maxium Temperature         14.0         < | Maxium Temperature         23.3         22.4         23.6           Minimum Temperature         14.1         13.7         14.2           Mean Temperature         18.7         18.1         18.9           Maxium Temperature         22.7         24.2         24.6           Minimum Temperature         12.9         14.8         15.9           Mean Temperature         17.8         19.5         20.3           Maxium Temperature         23.3         24.9         25.5           Minimum Temperature         12.9         13.8         14.4           Mean Temperature         18.1         19.4         20.0           Maxium Temperature         12.3         12.6         13.4           Mean Temperature         17.6         18.1         18.9           Maxium Temperature         17.6         18.1         18.9           Maxium Temperature         12.9         13.2         13.8           Mean Temperature         12.9         13.2         13.8           Mean Temperature         18.4         18.5         19.3           Maxium Temperature         12.4         13.9         15.0           Mean Temperature         12.4         13.9         15.0 <td>Maxium Temperature         23.3         22.4         23.6         24.3           Minimum Temperature         14.1         13.7         14.2         15.9           Mean Temperature         18.7         18.1         18.9         20.1           Maxium Temperature         22.7         24.2         24.6         23.7           Minimum Temperature         12.9         14.8         15.9         16.0           Mean Temperature         17.8         19.5         20.3         19.9           Maxium Temperature         23.3         24.9         25.5         26.9           Minimum Temperature         12.9         13.8         14.4         15.9           Mean Temperature         18.1         19.4         20.0         21.4           Maxium Temperature         12.3         12.6         13.4         14.1           Mean Temperature         17.6         18.1         18.9         19.9           Maxium Temperature         12.9         13.2         13.8         14.8           Mean Temperature         18.4         18.5         19.3         20.5           Maxium Temperature         18.4         18.5         19.3         20.5           Maxium Temperature</td> | Maxium Temperature         23.3         22.4         23.6         24.3           Minimum Temperature         14.1         13.7         14.2         15.9           Mean Temperature         18.7         18.1         18.9         20.1           Maxium Temperature         22.7         24.2         24.6         23.7           Minimum Temperature         12.9         14.8         15.9         16.0           Mean Temperature         17.8         19.5         20.3         19.9           Maxium Temperature         23.3         24.9         25.5         26.9           Minimum Temperature         12.9         13.8         14.4         15.9           Mean Temperature         18.1         19.4         20.0         21.4           Maxium Temperature         12.3         12.6         13.4         14.1           Mean Temperature         17.6         18.1         18.9         19.9           Maxium Temperature         12.9         13.2         13.8         14.8           Mean Temperature         18.4         18.5         19.3         20.5           Maxium Temperature         18.4         18.5         19.3         20.5           Maxium Temperature |

Note: T means trace

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

| Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|------|------|------|------|------|------|------|
| 23.8 | 22.3 | 22.0 | 22.8 | 23.9 | 23.7 | 23.4 |
| 16.5 | 16.2 | 15.9 | 16.2 | 16.3 | 15.9 | 14.0 |
| 20.2 | 19.3 | 19.0 | 19.5 | 20.1 | 19.8 | 18.7 |
| 22.1 | 22.4 | 22.8 | 22.3 | 21.8 | 24.3 | 23.3 |
| 16.5 | 16.3 | 16.8 | 16.8 | 15.2 | 15.1 | 12.8 |
| 19.3 | 19.4 | 19.8 | 19.6 | 18.5 | 19.7 | 18.1 |
| 25.1 | 24.2 | 23.3 | 23.7 | 23.3 | 23.7 | 23.7 |
| 16.7 | 16.0 | 16.1 | 15.7 | 15.7 | 15.4 | 13.9 |
| 20.9 | 20.1 | 19.7 | 19.7 | 19.5 | 19.6 | 18.8 |
| 23.6 | 22.2 | 22.5 | 22.2 | 22.8 | 24.0 | 23.8 |
| 15.4 | 15.1 | 15.2 | 15.1 | 14.7 | 14.8 | 14.3 |
| 19.5 | 18.7 | 18.9 | 18.7 | 18.8 | 19.4 | 19.1 |
| 22.5 | 22.8 | 20.7 | 24.2 | 23.6 | 24.9 | 24.5 |
| 15.5 | 15.4 | 15.2 | 15.9 | 14.7 | 14.6 | 13.8 |
| 19.0 | 19.1 | 18.0 | 20.1 | 19.2 | 19.8 | 19.2 |
| 24.4 | 24.0 | 22.3 | 23.2 | 22.4 | 23.3 | 22.9 |
| 16.5 | 15.9 | 15.7 | 15.8 | 14.6 | 15.0 | 14.4 |
| 20.5 | 20.0 | 19.0 | 19.5 | 18.5 | 19.2 | 18.7 |
| 23.5 | 22.8 | 22.5 | 22.6 | 23.6 | 24.1 | 23.7 |
| 16.4 | 16.1 | 16.3 | 16.0 | 15.7 | 15.0 | 14.6 |
| 20.0 | 19.5 | 19.4 | 19.3 | 19.7 | 19.6 | 19.2 |
| 24.6 | 21.0 | 22.6 | 23.7 | 23.0 | 24.3 | 23.4 |
| 16.9 | 15.9 | 16.0 | 16.4 | 15.6 | 15.3 | 15.0 |
| 20.8 | 18.5 | 19.3 | 20.1 | 19.3 | 19.8 | 19.2 |
| 24.6 | 23.8 | 21.3 | 23.0 | 23.2 | 23.5 | 23.8 |
| 16.7 | 16.2 | 16.1 | 16.0 | 15.8 | 15.1 | 14.8 |
| 20.7 | 20.0 | 18.7 | 19.5 | 19.5 | 19.3 | 19.3 |
| 25.2 | 23.3 | 23.2 | 23.5 | 23.2 | 23.9 | 23.5 |
| 17.0 | 16.5 | 16.6 | 16.7 | 16.2 | 16.1 | 14.8 |
| 21.1 | 19.9 | 19.9 | 20.1 | 19.7 | 20.0 | 19.1 |
| 22.5 | 22.1 | 20.6 | 23.1 | 23.6 | 24.6 | 23.8 |
| 16.6 | 16.3 | 16.3 | 15.8 | 15.3 | 14.1 | 14.1 |
| 19.6 | 19.2 | 18.5 | 19.5 | 19.5 | 19.4 | 19.0 |
|      |      |      |      |      |      |      |

Table 1.2 List of Watershed Forest Reserves in CAR, 2018

| Name of December 1                               | Proclamation  | Dete         | Proclaimed Area | Computer-      |
|--------------------------------------------------|---------------|--------------|-----------------|----------------|
| Name of Reservation                              | Number        | Date         | (in hectares)   | Generated Area |
| Buyog Forest Reserve                             | 93            | Nov 5, 1992  | 21.9            | 19.8           |
| Ambuklao-Binga Watershed<br>Reservation          | 548           | Apr 19, 1969 | 73,350.0        | 89,271.0       |
| SRMPD Watershed Forest<br>Reservation(DENR Area) | 2320          | Nov 22, 1993 |                 | 29,758.9       |
| SRMPD Watershed Forest<br>Reservation(NPC Area)  | 2320          | Nov 22, 1993 |                 | 9,618.8        |
| Lucnab Watershed Forest Reserve                  | 178           | May 12, 1993 | 6.0             | 6.0            |
| Crystal Cave Forest Reserve                      | 16            | Apr 27, 1922 | 4.1             | 4.1            |
| Busol Forest Reserve                             | 15            | Apr 2, 1922  | 336.6           | 340.0          |
| Ambuklao Forest Reserve                          | 120           | Nov 25, 1966 | 10,000.0        | 9,695.0        |
| Forbes Park Forest Reserve(Parcel-2)             | 10            | Oct 12, 1915 | •••             | 16.8           |
| Forbes Park Forest Reserve(Parcel 1)             | 10            | Oct 12, 1915 | •••             | 29.9           |
| Forbes Park Forest Reserve (Parcel 3)            | 10            | Oct 12, 1915 |                 | 24.0           |
| Natonin-Tanudan Forest Reserve                   | 85            | Aug 9, 1966  | 6,958.0         | 17,359.7       |
| Abulog River Forest Reserve                      | 573           | Jun 26, 1969 | 195,659.0       | 204,456.3      |
| Natonin Forest Reserve                           | 166           | Dec 13, 1969 | 2,843.0         | 7,825.9        |
| Casamata Hill National Park                      | P.D. No. 1305 | Aug 6, 1974  | 57.0            | 496.1          |
| Malubluba Watershed Forest Reserve               |               |              | •••             | 230.4          |
| Guimitara Watershed Forest Reserve               |               |              |                 | 63.7           |
| Mt. Sto. Domingo Forest Reserve                  | 73            | Aug 9, 1966  | 9,693.0         | 4,374.4        |
| Bontoc-Ifugao Forest Reserve(Lot 1)              | 636           | Oct 19, 1940 |                 | 1,091.4        |
| Bontoc-Ifugao Forest Reserve(Lot 2)              | 636           | Oct 19, 1940 |                 | 325.2          |
| Central Conner Forest Reserve                    | 126           | Nov 25, 1966 | 116, 682        | 19,647.9       |
| Mount Pulag National Park                        | 75            | Feb 20, 1987 | 11,550.0        | 12,726.1       |
| Central Mayoyao Forest Reserve                   | 156           | Feb 13, 1969 | 13,420.0        | 13,222.9       |
| Magat River Forest Reserve(CAR Side)             | 573           | Jun 26, 1969 |                 | 321,310.9      |
| Damlusong Watershed Forest Reserve               |               |              |                 | 1,040.5        |
| Boasao Watershed Forest Reserve                  |               |              |                 | 119.0          |
| Central Cordillera Forest Resrve                 | 217           | Feb 16, 1929 | 697,138.2       | 839,005.7      |
| Balbalan-Balbalasang National Park               |               |              |                 | 22,658.1       |
| Balbalan-Balbalasang National Park(Proclaimed)   | 1357          | Dec 9, 1974  | 1,338.0         | 1,593.4        |
| Chico River Forest Reserve                       | 573           | Jun 26, 1969 | 333,176.2       | 344,706.6      |
| Asin Forest Reserve                              | 677           | Feb 5, 1941  | 2,168.0         | 2,744.7        |
| Mount Sto. Tomas Forest Reserve                  | 581           | Jul 8, 1940  | 3,114.0         | 3,134.5        |
| Marcos Highway Forest Reserve                    | 1774          | Jun 8, 1978  | ***             | 5,734.1        |
| Ifugao-Isabela Forest Reserve                    | Unnumbered    | Aug 9, 1969  | 26,922.0        | 32,818.8       |
| Hapol-agan Forest Reserve                        | 158           | Sep 22, 1987 | 216.5           |                |

**Table 1.6 List of Priority Watershed in CAR** As of 2013 (area in hectares)

| Name of<br>Watershed            | No. Of<br>Watershed | Watershed<br>Area | Location<br>(Province)                   | Municipalities Covered                                                                                                                                 |
|---------------------------------|---------------------|-------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAR                             | 4                   | 582,500           |                                          |                                                                                                                                                        |
| Chico River<br>Watershed        |                     | 330,000           | Mt. Province, Ifugao,<br>Kalinga, Apayao | Bauko, Sabangan, Bontoc, Sagada,<br>Sandangan & Barlig; Tinoc & Hungduan;<br>Tanudan, Lubuagan, Tinglayan, Pinukpuk,<br>Tabuk, Balbalan & Pasil; Coner |
| Mallig River<br>Watershed       |                     | 45,580            | Kalinga, Mt.<br>Province                 | Tanudan & Tabuk; Paracelis                                                                                                                             |
| Abulog River<br>Watershed       |                     | 205,000           | Apayao, Cagayan<br>(Basin Wide)          | Calanasan, Kabugao, Pudtol, Flora &<br>Coner; Abulog                                                                                                   |
| Manucotae<br>River<br>Watershed |                     | 1,920             | Cagayan, Apayao                          | Pamplona; Luna                                                                                                                                         |

Source: Department of Environment and Natural Resources, Forest Management Bureau

**Table 1.6 List of Priority Watershed in CAR** As of 2013 (area in hectares)

(continued)

| Name of<br>Watershed            | River Basin<br>(RB) Covered | National<br>Irrigation<br>System         | Number of<br>River | NIS Service<br>Area |
|---------------------------------|-----------------------------|------------------------------------------|--------------------|---------------------|
| CAR                             |                             |                                          | 5                  | 20,153              |
| Chico River<br>Watershed        | Cagayan RB                  | Lower Chico<br>RIS<br>Upper Chico<br>RIS | 2                  | 19,407              |
| Mallig River<br>Watershed       | Cagayan RB                  | Mallig RIS                               | 1                  |                     |
| Abulog River<br>Watershed       | Abulog RB                   | Abulog-Apayao<br>RIS                     | 1                  |                     |
| Manucotae<br>River<br>Watershed | Oamplona RB                 | Pamplona RIS                             | 1                  | 746                 |

Table 1.7 Areas Susceptible to Erosion by Class by Province, CAR As of 2019

|              |                        |                | <b>Erosion Class</b> |                |                         |
|--------------|------------------------|----------------|----------------------|----------------|-------------------------|
| Province     | No Apparent<br>Erosion | Slight Erosion | Moderate Erosion     | Severe Erosion | Unclassified<br>Erosion |
| Abra         | 11,190                 | 166,853        | 97,194               | 72,737         | 29,998                  |
| Apayao       | 38,335                 | 134,065        | 168,293              | 81,050         | -                       |
| Benguet      | 10,562                 | 142,484        | 97,471               | 51,443         | 1,562                   |
| Ifugao       | 7,459                  | 95,505         | 60,388               | 91,529         | 2,169                   |
| Kalinga      | 39,917                 | 93,405         | 70,090               | 53,964         | 3,618                   |
| Mt. Province | 22,342                 | 48,122         | 100,787              | 54,763         | 2,051                   |
| TOTAL        | 129,805                | 680,433        | 594,223              | 405,486        | 39,398                  |

Table 1.7 Areas Susceptible to Erosion by Class by Province, CAR As of 2019 (continued)

| Province     | Reservoir | River  | Total     |
|--------------|-----------|--------|-----------|
| Abra         | -         | 7,720  | 385,692   |
| Apayao       | -         | 1,870  | 423,613   |
| Benguet      | 1,594     | -      | 305,117   |
| lfugao       | 819       | 413    | 258,282   |
| Kalinga      | -         | 3,898  | 264,892   |
| Mt. Province | -         | -      | 228,064   |
| TOTAL        | 2,413     | 13,902 | 1,865,660 |

Table 1.8 **Land Cover Classification, CAR** 2015 (area in hectares)

| Region/        | Forest (ha.) |         | )        | Other Wo            | Other Wooded Land (ha.) |        |                | Agricultural (ha.) |          | Built up |
|----------------|--------------|---------|----------|---------------------|-------------------------|--------|----------------|--------------------|----------|----------|
| Province       | Closed       | Open    | Mangrove | Wooded<br>Grassland | Shrubs                  | Fallow | Annual<br>Crop | Perennial<br>Crop  | Fishpond | Area     |
| CAR            | 254,065      | 578,270 | -        | -                   | 520,503                 | -      | 245,123        | 5,119              | 223      | 23,809   |
| Abra           | 36,705       | 115,983 |          | -                   | 122,923                 | -      | 38,416         | 482                | -        | 3,222    |
| Apayao         | 110,356      | 146,808 |          | -                   | 117,776                 | -      | 30,972         | 1,843              | -        | 2,834    |
| Benguet        | 7,670        | 117,455 |          | -                   | 93,619                  | -      | 47,631         | 27                 | -        | 8,868    |
| Ifugao         | 18,536       | 73,162  |          | -                   | 51,013                  | -      | 52,917         | 1,050              | 223      | 3,082    |
| Kalinga        | 42,477       | 50,042  |          | -                   | 76,573                  | -      | 46,911         | 702                | -        | 3,290    |
| Mt<br>Province | 38,321       | 74,820  |          | -                   | 58,598                  | -      | 28,276         | 1,015              | -        | 2,514    |

Source: National Mapping and Resource Information Authority, Department of Environment and Natural Resources

Table 1.8 **Land Cover Classification, CAR** 2015 (area in hectares) (continued)

| Di /Di          | Other       | Natural Land (h | a.)       | Inland Water | Grand Total |
|-----------------|-------------|-----------------|-----------|--------------|-------------|
| Region/Province | Barren Land | Grassland       | Marshland | iniand water | Grand Iotai |
| CAR             | 10,839      | 203,706         | -         | 24,002       | 1,865,660   |
| Abra            | 4,121       | 57,689          | -         | 6,150        | 385,692     |
| Apayao          | 1,637       | 6,348           | -         | 5,038        | 423,613     |
| Benguet         | 1,519       | 23,983          | -         | 4,344        | 305,117     |
| Ifugao          | 1,012       | 53,628          | -         | 3,659        | 258,282     |
| Kalinga         | 2,513       | 39,450          | -         | 2,936        | 264,892     |
| Mt Province     | 37          | 22,608          | -         | 1,876        | 228,064     |

**Table 1.19.1a** List of Known Flora in Balbalasang Balbalan National Park as of 2019 (continued)

| Plant Form | Family Name    | Scientific Name                | Common Name   | Local Name | Geographical<br>Distribution |
|------------|----------------|--------------------------------|---------------|------------|------------------------------|
| Tree       |                |                                |               |            |                              |
|            |                | Mangifera indica               | Mango         |            | Indigenous                   |
|            | Anacardiaceae  | Semecarpus philippinensis      | Ligas         | Kamiring   | Indigenous                   |
|            |                | Mangifera altissima            | Pahutan       |            | Indigenous                   |
|            | Anonaceae      | Annona Muricata                | Guyabano      |            | Indigenous                   |
|            | Apocynaseae    | alstonia scholaris             | Dita          |            | Indigenous                   |
|            | Araucariaceae  | Agathis damara                 | Almaciga      |            | Indigenous                   |
|            | Areacaceae     | Caryota maxima                 | Takipan       | Bolang     | Indigenous                   |
|            | Aleacaceae     | Areca Catechu                  | Bunga         | bua        | Indigenous                   |
|            | Bixaceae       | Bixa orellana                  | Achuete       | Colonosi   | Indigenous                   |
|            | Caprifiaceae   | Viburnum odoratissimum         | ldog          |            | Indigenous                   |
|            | Clusiaceae     | Callophyllum inophyllum        | Bitaog        |            | Indigenous                   |
|            | Combretaceae   | Terminalia catappa             | Talisai       |            | Indigenous                   |
|            |                | Terminalia edulis              | Kalumpit      | Solbo      | Indigenous                   |
|            | Dilleniaceae   | Dillenia Philippinensis        | Katmon        |            | Endemic                      |
|            |                | Anisoptera thurifera           | Palosapis     |            | Endemic                      |
|            |                | Shorea astylosa                | Yakal         |            | Endemic                      |
|            | Diptocarpaceae | Shorea negrosensis             | Red Lauan     |            | Endemic                      |
|            |                | Shorea palosapis               | Mayapis       |            | Endemic                      |
|            |                | Shorea Polysperma              | Tanguile      |            | Endemic                      |
|            |                | Shorea guiso                   | Guijo         |            | Indigenous                   |
|            |                | Macaranga bicolor              | Hamindang     |            | Endemic                      |
|            |                | Macaranga grandifolia          | Takip-asin    |            | Endemic                      |
|            |                | excoecaria agallocha           | Buta buta     |            | Indigenous                   |
|            |                | Acalypha amantaceae            | Bogus         |            | Indigenous                   |
|            | Euphorbiaceae  | Macaranga<br>dipterorarpifolia | Balumti       |            | Indigenous                   |
|            |                | Macaranga hispidia             | Lagapak       |            | Indigenous                   |
|            |                | Macaranga tanarius             | Binunga       | Samak      | Indigenous                   |
|            |                | Mallotus ricinoides            | Hinlaumo      | Kaliwawoy  | Indigenous                   |
|            |                | Cassia spectabilis             | Anchoan dilaw |            | Exotic                       |
|            |                | Albizia saman                  | Acacia        |            | Exotic                       |
|            |                | Calliandra calothyrsus         | Calliandra    |            | Exotic                       |
|            |                | Tamarindus indica              | Tamarind      |            | Exotic                       |
|            |                | Albizia procera                | Akleng parang |            | Indigenous                   |
|            | Fabaceae       | Bauhinia monandra              | Fringon       |            | Indigenous                   |
|            |                | Erythrina subumbrans           | Rarang        | Sablang    | Indigenous                   |
|            |                | Lecaena leucocephala           | Ipil-ipil     |            | Indigenous                   |
|            |                | Sesbania gradiflora            | Katurai       |            | Indigenous                   |
|            |                | Gliricidia sepium              | Kakawate      |            | Indigenous                   |
|            |                | Ptercarpus indicus             | Narra         |            | Indigenous                   |

**Table 1.19.1a** List of Known Flora in Balbalasang Balbalan National Park as of 2019 (continued)

| Plant Form | Family Name    | Scientific Name           | Common Name           | Local Name | Geographical<br>Distribution |
|------------|----------------|---------------------------|-----------------------|------------|------------------------------|
|            | Lamiaceae      | Gmelina arborea           | Yemane                |            | Exotic                       |
|            | Lamiaceae      | Persea Americana          | Avocado               |            | Exotic                       |
|            | Leeaceae       | Leea guineensis           | Mali-mali             |            | Indigenous                   |
|            | Lythraceae     | Lagerstroemia speciosa    | Banaba                |            | Indigenous                   |
|            | Malvaceae      | Ceiba pentandra           | Kapok                 |            | Indigenous                   |
|            |                | Sandocrium koetjape       | Santol                |            | Exotic                       |
|            |                | Swietenia macrophyllia    | Mahogany              |            | Exotic                       |
|            | Meliaceae      | Aglaia rimosa             | Bayanti               |            | Indigenous                   |
|            | menaceae       | Dysoxylum gaudichaudianum | Igyo                  |            | Indigenous                   |
|            |                | Lansium domesticum        | Lansones              |            | Indigenous                   |
|            |                | Ficus septica             | Hauili                |            | Endemic                      |
|            |                | Artocarpus blancoi        | Antipolo              |            | Endemic                      |
|            |                | Ficus ulmifolia           | ls-is                 |            | Endemic                      |
|            |                | Artocarpus heterophyllus  | Nanka                 |            | Indigenous                   |
|            | Moraceae       | Artocarpus ovatus         | Anubing               |            | Indigenous                   |
|            |                | Broussonetia luzonica     | Himbabao              |            | Indigenous                   |
|            |                | Ficus balete              | Balete                | Tolak      | Indigenous                   |
|            |                | Ficus minahassae          | Hagimit               |            | Indigenous                   |
|            |                | Ficus nota                | Tibig                 |            | Indigenous                   |
|            |                | Ficus variegata           | Tangisang-<br>bayawak | Tabog      | Indigenous                   |
|            |                | Artocarpus camansi        | Kamansi               | Pakak      | Indigenous                   |
|            |                | Artocarpus altilis        | Rimas                 |            | Indigenous                   |
|            | Myrtaceae      | Psidium guajava           | Bayabas               |            | Exotic                       |
|            | Phyllanthaceae | Bischofia javanica        | Tuai                  | Tuol       | Indigenous                   |
|            | Pinaceae       | Pinus Kesiya              | Benguet Pine          |            | Indigenous                   |
|            | Rubiaceae      | Coffea Arabica            | Kape                  |            | Exotic                       |
|            | Rutaceae       | Citrus grandis            | Pomelo                |            | Exotic                       |
|            | nutaceae       | Citrus hystrix            | Kabuyau               |            | Indigenous                   |
|            | Sapotaceae     | Chrysophyllum Cainito     | Caimito               |            | Exotic                       |
|            | Sterculiceae   | Pterocymbium tinctorium   | Taluto                |            | Indigenous                   |
|            | Theaceae       | Camelia lanceolata        | Haikan                |            | Indigenous                   |
|            | Ulmaceae       | Trema orientalis          | Anabiong              |            | Indigenous                   |
|            |                | Leukosyke benguetensis    |                       |            | Endemic                      |
|            | Urticaceae     | Leukosyke capitellata     | Alagasi               |            | Indigenous                   |
|            |                | Pipturus arborescens      | Dalunot               |            | Indigenous                   |
|            |                |                           |                       |            |                              |

**Table 1.19.1a** List of Known Flora in Balbalasang Balbalan National Park as of 2019 (continued)

| Plant Form | Family Name         | Scientific Name                                                    | Common Name            | Local Name | Geographical<br>Distribution |
|------------|---------------------|--------------------------------------------------------------------|------------------------|------------|------------------------------|
| Vine       |                     |                                                                    |                        |            |                              |
|            | Asteraceae          | Mikania cordata                                                    | Uoko                   |            | Exotic                       |
|            | Asteraceae          | Centrosema pubescens                                               | Dilang-butiki          |            | Indigenous                   |
|            |                     | Strongylodon<br>macrobotrys                                        | Jade Vine              |            | Endemic                      |
|            | Fabaceae            | Phaseolus lunatus                                                  | Patani                 |            | Exotic                       |
|            |                     | Pueraria montana                                                   | Kudsu                  |            | Indigenous                   |
|            | Leeaceae            | Arcangilisia flava                                                 | Albutra                |            | Indigenous                   |
|            | Piperaceae          | Piper interrutum                                                   | Litlit                 |            | Indigenous                   |
|            | Poaceae             | Dinochloa sp.                                                      | Dinochloa              |            |                              |
| Herb       |                     |                                                                    |                        |            |                              |
|            | Amaryllidaceae      | Hymenocallis littoralis                                            | Spider lily            |            | Indigenous                   |
|            | Apiaceae            | Centalla asiatica                                                  | Takip Kuhol            |            | Indigenous                   |
|            | Araceae             | Colocasia esculenta                                                | Gabi                   |            | Exotic                       |
|            |                     | Dieffenbachlia sp.                                                 | unknown                |            |                              |
|            |                     | Shefflera sp.                                                      | unknown                |            |                              |
|            | Astraceae           | Chromolaena odorata                                                | Hagonoy                |            | Exotic                       |
|            |                     | Ageratum conyzoides                                                | Bulak-Manok            |            | Exotic                       |
|            |                     | Bidens pilosa                                                      | Dadayem                |            | Indigenous                   |
|            | Commelinaceae       | Pollia secundiflora                                                | Salibangon             |            | Indigenous                   |
|            | Fabaceae            | Mimosa pudica L.                                                   | Makahiya               |            | Exotic                       |
|            | merrillii Costaceae | Rhaphidophora                                                      | unknown                |            |                              |
|            | Musaceae            | Musa speciosus                                                     | Saging                 |            | Indigenous                   |
|            | Myrtaceae           | Fleurya interrupta                                                 | Lipang aso             |            | Exotic                       |
|            | Nepenthaceae        | Nepenthes alata                                                    | Pitcher Plant          |            | Endemic                      |
|            |                     | Nepenthes ventricosa                                               | Pitcher Plant          |            | Endemic                      |
|            | Smilacaceae         | Costus speciosus                                                   | Tubung-usa             |            | Indigenous                   |
|            | Zingberaceae        | Alpinia galanga                                                    | ankuakas               |            | Indigenous                   |
|            |                     | Kolowratia elegans                                                 | Tagbak                 |            | Endemic                      |
| Fern       |                     |                                                                    |                        |            |                              |
|            | Adiantaceae         | Adiantum caudatum                                                  | Alambrillong<br>gubat  |            | Indigenous                   |
|            | Aspleniaceae        | Asplenium nidus                                                    | Pakpak lawin<br>lalake |            | Indigenous                   |
|            | Cyatheaceae         | Cyathea contaminans                                                | Pakong-buwaya          | Sibanglan  | Indigenous                   |
|            | Dennstaedtiaceae    | Pteridium aquilinium                                               | Giant fern             |            | Indigenous                   |
|            | Dryopteridaceae     | Bolbitis rhozophylla                                               | Unknown                |            | Indigenous                   |
|            |                     | Tectaria crenata                                                   | Patugo                 |            | Indigenous                   |
|            | Gleicheniaceae      | Dicranopteris linearis                                             | Kilob                  |            |                              |
|            | Hymenophyllaceae    | Tricholomanes<br>Thysanostomum<br>latural Resources - Cordillera A | Unknown                |            | Indigenous                   |

**Table 1.19.1a** List of Known Flora in Balbalasang Balbalan National Park as of 2019 (continued)

| Apocynaceae Tabernaemontana pandacaqui Pandakaki Indigenous Pandacaqui Exotic Tithonia diversifolia Wild sunflower Exotic Chorantaceae Chloranthus erectus Baraw-baraw Indigenous chorantaceae Chloranthus glaber Gipas Indigenous Breynia rhamnoides Matanghipon Indigenous Indigenous Preynia rhamnoides Matanghipon Indigenous Indigenous Malvaceae Hibiscus rosa-sinensis Gumamela Indigenous Astronia candolleana Talanak Endemic Astronia cumingiana Badlin Indigenous Indigenous Melastomataceae Melastomata malabathricum Dunagu Indigenous Melinililia sp. Unknown Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Pricus ampelas Aplas Indigenous Indigenous Pricus ampelas Aplas Indigenous Indigenous Amorece Indigenous Exotic Pennisetum purpureum Elephant grass Exotic Pennisetum purpureum Elephant grass Exotic Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Indigenous Imperata cylindrica Cogon Indigenous Indigenous Imperata cylindrica Cogon Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous | Plant Form | Family Name     | Scientific Name        | Common Name       | Local Name | Geographical<br>Distribution |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|------------------------|-------------------|------------|------------------------------|
| Prerioaceae calomelanos Prakonig-gubat indigenous Pretris cretica Cretan brake ferm Indigenous Selaginellaceae Selahinella Jagorii Selaginella Endemic Shrub  Shrub  Apocynaceae Tabernaemontana pandacaqui Pandakaki Indigenous Bangbangsit Exotic Tithonia diversifolia Wild sunflower Exotic Shrub  Asteraceae Ageratina adenophora Bangbangsit Exotic Tithonia diversifolia Wild sunflower Exotic Department of the parameter of the parame |            | Polypodiaceae   | Microsorum longissimum | Pakong-bato       |            |                              |
| Schizaeaceae   Lygodium cirncinnatum   Nitong Puti   Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Pteridaceae     |                        | Pakong-gubat      |            | Indigenous                   |
| Selaginellaceae Selahinella Jagorii Selaginella Endemic  Shrub  Apocynaceae Tabernaemontana pandacaqui Pandakaki Indigenous Pandakaki Exotic  Tithonia diversifolia Wild sunflower Exotic  Chorantaceae Chloranthus erectus Baraw-baraw Indigenous chorantaceae Chloranthus glaber Gipas Indigenous Breynia rhamnoides Matanghipon Indigenous Indigenous Breynia rhamnoides Matanghipon Indigenous Indigenous Lycopodiaceae Lycopodium cernuum Lamon-babae Indigenous Astronia cumingiana Badlin Indigenous Indigenous Melastomataceae Melastomata Badlin Indigenous Indigenous Melastomataceae Melastomata malabathricum Dunagu Indigenous Indigenous Medinillia sp. Unknown  Moracea Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Indigenous Pricus ampelas Aplas Indigenous Indigenous Pricus ampelas Aplas Indigenous Indigenous Medinillia sp. Unknown  Theaceae Camellia sinensis Unknown Tsa Exotic Exotic Verbenaceae Lantana camara Coronitas Exotic Exotic Andropogin aciculatus Amorseco Indigenous Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Indigenous Bambusa Comulata Lopa Indigenous Indigenous Bambusa Comulata Lopa Indigenous Indigenous Bambusa Comulata Lopa Indigenous Indigenous Bambusa Cogon Indigenous Indigenous Miscanthus sinensis Rono Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Indigenous Miscanthus sinensis Rono Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Indigenous Miscanthus sinensis Rono Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Ind |            |                 | Pteris cretica         | Cretan brake fern |            | Indigenous                   |
| Shrub  Apocynaceae Tabernaemontana pandacaqui Pandakaki Indigenous Asteraceae Ageratina adenophora Bangbangsit Exotic Tithonia diversifolia Wild sunflower Exotic Chorantaceae Chloranthus erectus Baraw-baraw Indigenous Chorantaceae Chloranthus glaber Gipas Indigenous Breynia rhamnoides Matanghipon Indigenous Indigenous Lycopodiaceae Lycopodium cernuum Lamon-babae Indigenous Indigenous Malvaceae Hibiscus rosa-sinensis Gumamela Indigenous Astronia candolleana Talanak Endemic Astronia candolleana Talanak Endemic Medinillia sp. Unknown  Melastomataceae Melastomata malabathricum Dunagu Indigenous Medinillia sp. Unknown  Ficus pseudopalma Niog-niogan Endemic Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Exotic Verbenaceae Lantana camara Coronitas Exotic Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Coronitas Exotic Pensietum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Comulata Lopa Indigenous Bambusa Comulata Lopa Indigenous Bambusa Coronitas Exotic Pensietum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Comulata Lopa Indigenous Bambusa Coronitas Exotic Pensietum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Coronitas Exotic Pensietum purpureum Elephant grass Indigenous Bambusa Coronitas Exotic Pensietum purpureum Elephant grass Indigenous Bambusa Coronitas Exotic Pensietum purpureum Elephant grass Exotic Indigenous Bambusa Coronitas Exotic Exotic Pensietum purpureum Elephant grass Exotic Pensietum purpureum Elephant grass Exotic Indigenous Bambusa Coronitas Exotic Exotic Pensietum purpureum Elephant grass Exo |            | Schizaeaceae    | Lygodium cirncinnatum  | Nitong Puti       |            | Indigenous                   |
| Apocynaceae Tabernaemontana pandacaqui Pandakaki Indigenous Pandacaqui Exotic Tithonia diversifolia Wild sunflower Exotic Chorantaceae Chloranthus erectus Baraw-baraw Indigenous chorantaceae Chloranthus glaber Gipas Indigenous Breynia rhamnoides Matanghipon Indigenous Indigenous Preynia rhamnoides Matanghipon Indigenous Indigenous Malvaceae Hibiscus rosa-sinensis Gumamela Indigenous Astronia candolleana Talanak Endemic Astronia cumingiana Badlin Indigenous Indigenous Melastomataceae Melastomata malabathricum Dunagu Indigenous Melinililia sp. Unknown Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Pricus ampelas Aplas Indigenous Indigenous Pricus ampelas Aplas Indigenous Indigenous Amorece Indigenous Exotic Pennisetum purpureum Elephant grass Exotic Pennisetum purpureum Elephant grass Exotic Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Indigenous Imperata cylindrica Cogon Indigenous Indigenous Imperata cylindrica Cogon Indigenous Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous |            | Selaginellaceae | Selahinella Jagorii    | Selaginella       |            | Endemic                      |
| Asteraceae Ageratina adenophora Bangbangsit Exotic Tithonia diversifolia Wild sunflower Exotic Chorantaceae Chloranthus erectus Baraw-baraw Indigenous chorantaceae Chloranthus glaber Gipas Indigenous Euphorbiaceae Acalypha wilkesiana Badoues Indigenous Breynia rhamnoides Matanghipon Indigenous Lycopodiaceae Lycopodium cernuum Lamon-babae Indigenous Malvaceae Hibiscus rosa-sinensis Gumamela Indigenous Astronia cumingiana Badlin Indigenous Melastomataceae Melastomata Badlin Indigenous Melastomataceae Melastomata Dunagu Indigenous Mediniillia sp. Unknown Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Grass  Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Pennisetum purpureum Elephant grass Exotic Bambusa Blumeana Kawayan-tinik Indigenous Indigenous Bambusa Comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Sporolobus indicus Weeping grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shrub      |                 |                        |                   |            |                              |
| Tithonia diversifolia Wild sunflower Exotic Chorantaceae Chloranthus erectus Baraw-baraw Indigenous chorantaceae Chloranthus glaber Gipas Indigenous Euphorbiaceae Acalypha wilkesiana Badoues Indigenous Breynia rhamnoides Matanghipon Indigenous Lycopodiaceae Lycopodium cernuum Lamon-babae Indigenous Malvaceae Hibiscus rosa-sinensis Gumamela Indigenous Astronia candolleana Talanak Endemic Astronia cumingiana Badlin Indigenous Melastomataceae Melastomata malabathricum Dunagu Indigenous Medinillia sp. Unknown Ficus ampelas Aplas Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic Grass  Grass  Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Comulata Lopa Indigenous Miscanthus sinensis Rono Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Apocynaceae     |                        | Pandakaki         |            | Indigenous                   |
| Chorantaceae Chloranthus erectus Baraw-baraw Indigenous chorantaceae Chloranthus glaber Gipas Indigenous Euphorbiaceae Acalypha wilkesiana Badoues Indigenous Breynia rhamnoides Matanghipon Indigenous Indigenous Lycopodiaceae Lycopodium cerunum Lamon-babae Indigenous Indigenous Astronia candolleana Talanak Endemic Astronia cumingiana Badlin Indigenous Indigenous Melastomataceae Melastomata malabathricum Dunagu Indigenous Indigenous Medinillia sp. Unknown Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Pritzus ampelas Aplas Indigenous Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Indigenous Bambusa Comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Indigenous Miscanthus sinensis Rono Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Setaria palmifolia Sporolobus indicus Weeping grass Indigenous Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Sporolobus indicus Weeping grass Indigenous Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Sporolobus indicus Weeping grass Indigenous Indig |            | Asteraceae      | Ageratina adenophora   | Bangbangsit       |            | Exotic                       |
| chorantaceae         Chloranthus glaber         Gipas         Indigenous           Euphorbiaceae         Acalypha wilkesiana         Badoues         Indigenous           Lycopodiaceae         Lycopodium cernuum         Lamon-babae         Indigenous           Malvaceae         Hibiscus rosa-sinensis         Gumamela         Indigenous           Malvaceae         Hibiscus rosa-sinensis         Gumamela         Indigenous           Astronia candolleana         Talanak         Endemic           Astronia cumingiana         Badlin         Indigenous           Melastomata<br>malabathricum         Dunagu         Indigenous           Medinillia sp.         Unknown         Endemic           Ficus pseudopalma         Niog-niogan         Endemic           Ficus ampelas         Aplas         Indigenous           Rosaceae         Rubus mollucanus         Pnit/Wildberry         Indigenous           Theaceae         Camellia sinensis         Unknown         Tsa         Exotic           Grass           February amara         Coronitas         Exotic           Paspalum Conjugatum         Carabao grass         Exotic           Pennisetum purpureum         Elephant grass         Exotic <td></td> <td></td> <td>Tithonia diversifolia</td> <td>Wild sunflower</td> <td></td> <td>Exotic</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 | Tithonia diversifolia  | Wild sunflower    |            | Exotic                       |
| Euphorbiaceae         Acalypha wilkesiana         Badoues         Indigenous           Lycopodiaceae         Lycopodium cernuum         Lamon-babae         Indigenous           Malvaceae         Hibiscus rosa-sinensis         Gumamela         Indigenous           Malvaceae         Hibiscus rosa-sinensis         Gumamela         Indigenous           Astronia candolleana         Talanak         Endemic           Astronia cumingiana         Badlin         Indigenous           Melastomataceae         Melastomata malabathricum         Dunagu         Indigenous           Moracea         Ficus pseudopalma         Niog-niogan         Endemic           Ficus ampelas         Aplas         Indigenous           Rosaceae         Rubus mollucanus         Pnit/Wildberry         Indigenous           Theaceae         Camellia sinensis         Unknown         Tsa         Exotic           Grass           Februaceae         Lantlaia camara         Coronitas         Exotic           Pepenisetum purpureum         Elephant grass         Exotic           Pennisetum purpureum         Elephant grass         Exotic           Andropogin aciculatus         Amorseco         Indigenous           Bambusa Blumeana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Chorantaceae    | Chloranthus erectus    | Baraw-baraw       |            | Indigenous                   |
| Breynia rhamnoides   Matanghipon   Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | chorantaceae    | Chloranthus glaber     | Gipas             |            | Indigenous                   |
| Lycopodiaceae Lycopodium cernuum Lamon-babae Indigenous Malvaceae Hibiscus rosa-sinensis Gumamela Indigenous Astronia candolleana Talanak Endemic Astronia cumingiana Badlin Indigenous Melastomataceae Melastomata malabathricum Dunagu Indigenous Medinillia sp. Unknown Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic Grass  Paspalum Conjugatum Carabao grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Bumeana Lopa Indigenous Bambusa Comulata Lopa Indigenous Indigenous Gigantochloa levis Bolo Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Euphorbiaceae   | Acalypha wilkesiana    | Badoues           |            | Indigenous                   |
| Malvaceae Hibiscus rosa-sinensis Gumamela Indigenous Astronia candolleana Talanak Endemic Astronia cumingiana Badlin Indigenous Melastomataceae Melastomata malabathricum Dunagu Indigenous Medinillia sp. Unknown  Moracea Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Indigenous Pnit/Wildberry Indigenous Indigenous Verbenaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic Coronitas Exotic Coronitas Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa Comulata Lopa Indigenous Indigenous Eleusine indicus Paragis Indigenous Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Setaria palmifolia Ayas-as Indigenous Indigenou |            |                 | Breynia rhamnoides     | Matanghipon       |            | Indigenous                   |
| Astronia candolleana Talanak Endemic Astronia cumingiana Badlin Indigenous Melastomataceae Melastomata malabathricum Medinillia sp. Unknown Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic  Grass  Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Eleusine indicus Paragis Indigenous Imperata cylindrica cogon Indigenous Imperata cylindrica cogon Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Lycopodiaceae   | Lycopodium cernuum     | Lamon-babae       |            | Indigenous                   |
| Melastomataceae Melastomata malabathricum Dunagu Indigenous Medinillia sp. Unknown  Moracea Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Indigenous Pnit/Wildberry Indigenous Exotic Verbenaceae Lantana camara Coronitas Exotic Fornitas Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Indigenous Eleusine indicus Paragis Indigenous Indigenous Imperata cylindrica cogon Indigenous Indigenous Imperata cylindrica cogon Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Indigenous Setaria palmifolia Ayas-as Indigenous I |            | Malvaceae       | Hibiscus rosa-sinensis | Gumamela          |            | Indigenous                   |
| Melastomataceae       Melastomata malabathricum       Dunagu       Indigenous         Medinillia sp.       Unknown       Ficus pseudopalma       Niog-niogan       Endemic         Ficus ampelas       Aplas       Indigenous         Rosaceae       Rubus mollucanus       Pnit/Wildberry       Indigenous         Theaceae       Camellia sinensis       Unknown       Tsa       Exotic         Verbenaceae       Lantana camara       Coronitas       Exotic         Grass         Paspalum Conjugatum       Carabao grass       Exotic         Pennisetum purpureum       Elephant grass       Exotic         Andropogin aciculatus       Amorseco       Indigenous         Bambusa Blumeana       Kawayan-tinik       Indigenous         Bambusa comulata       Lopa       Indigenous         Eleusine indicus       Paragis       Indigenous         Imperata cylindrica       cogon       Indigenous         Miscanthus sinensis       Rono       Indigenous         Sacharum spontaneum       Talahib       Indigenous         Setaria palmifolia       Ayas-as       Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Melastomataceae | Astronia candolleana   | Talanak           |            | Endemic                      |
| Medinillia sp. Unknown  Moracea  Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Unknown Tsa Exotic  Fensisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Eleusine indicus Paragis Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Setaria palmifolia Ayas-as Indigenous Indigenous Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                 | Astronia cumingiana    | Badlin            |            | Indigenous                   |
| Ficus pseudopalma Niog-niogan Endemic Ficus ampelas Aplas Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic  Grass  Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |                        | Dunagu            |            | Indigenous                   |
| Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic  Grass  Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Imperata cylindrica cogon Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 | Medinillia sp.         | Unknown           |            |                              |
| Ficus ampelas Aplas Indigenous Rosaceae Rubus mollucanus Pnit/Wildberry Indigenous Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic  Grass  Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Eleusine indicus Paragis Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Maracaa         | Ficus pseudopalma      | Niog-niogan       |            | Endemic                      |
| Theaceae Camellia sinensis Unknown Tsa Exotic Verbenaceae Lantana camara Coronitas Exotic  Grass  Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Eleusine indicus Paragis Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Woracea         | Ficus ampelas          | Aplas             |            | Indigenous                   |
| Verbenaceae       Lantana camara       Coronitas       Exotic         Grass       Paspalum Conjugatum Conjugatum Carabao grass       Exotic         Pennisetum purpureum Elephant grass       Exotic         Andropogin aciculatus       Amorseco       Indigenous         Bambusa Blumeana       Kawayan-tinik       Indigenous         Bambusa comulata       Lopa       Indigenous         Eleusine indicus       Paragis       Indigenous         Imperata cylindrica       cogon       Indigenous         Imperata cylindrica       cogon       Indigenous         Sacharum spontaneum       Talahib       Indigenous         Setaria palmifolia       Ayas-as       Indigenous         Sporolobus indicus       Weeping grass       Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Rosaceae        | Rubus mollucanus       | Pnit/Wildberry    |            | Indigenous                   |
| Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Eleusine indicus Paragis Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Theaceae        | Camellia sinensis      | Unknown           | Tsa        | Exotic                       |
| Paspalum Conjugatum Carabao grass Exotic Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Gigantochloa levis Bolo Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Verbenaceae     | Lantana camara         | Coronitas         |            | Exotic                       |
| Pennisetum purpureum Elephant grass Exotic Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Gigantochloa levis Bolo Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Grass      |                 |                        |                   |            |                              |
| Andropogin aciculatus Amorseco Indigenous Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Gigantochloa levis Bolo Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                 | Paspalum Conjugatum    | Carabao grass     |            | Exotic                       |
| Poaceae  Bambusa Blumeana Kawayan-tinik Indigenous Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Gigantochloa levis Bolo Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                 | Pennisetum purpureum   | Elephant grass    |            | Exotic                       |
| Poaceae  Bambusa comulata Lopa Indigenous Eleusine indicus Paragis Indigenous Indigenous Imperata cylindrica Cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                 | Andropogin aciculatus  | Amorseco          |            | Indigenous                   |
| Poaceae  Eleusine indicus Paragis Indigenous Gigantochloa levis Imperata cylindrica Cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 | Bambusa Blumeana       | Kawayan-tinik     |            | Indigenous                   |
| Poaceae  Gigantochloa levis Bolo Indigenous Imperata cylindrica cogon Indigenous Miscanthus sinensis Rono Indigenous Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                 | Bambusa comulata       | Lopa              |            | Indigenous                   |
| Imperata cylindrica cogon Indigenous  Miscanthus sinensis Rono Indigenous  Sacharum spontaneum Talahib Indigenous  Setaria palmifolia Ayas-as Indigenous  Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 | Eleusine indicus       | Paragis           |            | Indigenous                   |
| Imperata cylindricacogonIndigenousMiscanthus sinensisRonoIndigenousSacharum spontaneumTalahibIndigenousSetaria palmifoliaAyas-asIndigenousSporolobus indicusWeeping grassIndigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Descess         | Gigantochloa levis     | Bolo              |            | Indigenous                   |
| Sacharum spontaneum Talahib Indigenous Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | ruaceae         | Imperata cylindrica    | cogon             |            | Indigenous                   |
| Setaria palmifolia Ayas-as Indigenous Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 | Miscanthus sinensis    | Rono              |            | Indigenous                   |
| Sporolobus indicus Weeping grass Indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                 | Sacharum spontaneum    | Talahib           |            | Indigenous                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 | Setaria palmifolia     | Ayas-as           |            | Indigenous                   |
| Themeda triandra Samsamon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 | Sporolobus indicus     | Weeping grass     |            | Indigenous                   |
| HICHICA HAHAIA SAHISAHOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                 | Themeda triandra       | Samsamon          |            |                              |
| Thysanolaena latifolia Tambo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                 | Thysanolaena latifolia | Tambo             |            |                              |

**Table 1.19.1a** List of Known Flora in Balbalasang Balbalan National Park as of 2019 (continued)

| Plant Form      | Family Name     | Scientific Name            | Common Name                   | Local Name | Geographical<br>Distribution |
|-----------------|-----------------|----------------------------|-------------------------------|------------|------------------------------|
|                 |                 | Pennisetum<br>clandestinum | Kikuyu                        |            | Exotic                       |
| Orchid          |                 |                            |                               |            |                              |
|                 | Orchidaceae     | Spathoglottis plicata      | Ground Orchid                 |            | Indigenous                   |
| Unknown Species |                 |                            |                               |            |                              |
|                 | Acanthaceae     | Acanthus sp.               | Acanthus                      |            |                              |
|                 | Apocynaceae     | Hoya sp.                   | Hoya                          |            |                              |
|                 | Araceae         | Aracaceae sp.              |                               |            |                              |
|                 | Araliaceae      | Osmoxylon fenicis merr.    | Unknown                       |            |                              |
|                 | Arallaceae      | Araliaceaa sp. 6           |                               |            |                              |
|                 | A               | Arecaceae sp.              |                               |            |                              |
|                 | Areraceae       | Heterospather sp.          | Bilis                         |            |                              |
|                 | Burseraceae     | Canarium so.               |                               |            |                              |
|                 | Caprifliaceae   | Viburnum luzonicum         | Atelba                        |            |                              |
|                 | Ericaceae       | Vaccinium sp.              | Unknown                       |            |                              |
|                 | Fagaceae        | Lithocarpus sp.            | Tabangawan                    |            |                              |
|                 | Flamenthaceae   | Flamenthaceae sp.          |                               | Kalipa     |                              |
|                 | Hypoxidaceae    | Curculigo sp.              |                               |            |                              |
|                 | Icacinaceae     | Gomphandra sp.             | Unknown                       |            |                              |
|                 | Lamiaceae       | Clerodendrum sp.           | Unknown                       |            |                              |
|                 | Lauraceae       | Litsea sp.                 |                               |            |                              |
|                 | Leeaceae        | Leea sp.                   | Unknown                       |            |                              |
|                 | Melastomataceae | Astronia sp,               | Unknown                       |            |                              |
|                 | Moraceae        | Ficus ribes var cuneata    | Dungarug                      |            |                              |
|                 | Piperaceae      | Piper sp.                  | Unknown( long<br>narrow leaf) |            |                              |
|                 | Rosaceae        | Rosaceae sp. 25            |                               |            |                              |
|                 | Rutaceae        |                            | Kalinga orange                |            |                              |
|                 | Sapindaceae     | Nephelium sp               |                               |            |                              |
|                 |                 | Smilax sp.                 | Unknown                       |            |                              |
|                 | Smilacaceae     | Smilax sp. 21              |                               |            |                              |
|                 | Tiliaceae       | Microcos philippinensis    |                               | Balukok    |                              |
|                 | Urticaceae      | Elatostema sp.             |                               | Pawis      |                              |
|                 |                 | Tetrastigma sp.            | Unknown                       |            |                              |
|                 | Vitaceae        | Cayratia sp.               |                               |            |                              |

**Table 1.19.1b** List of Known Fauna in Balbalasang Balbalan National Park As of 2019

| Taxonomic<br>Class | Family | Scientific Name             | Common Name                    | Local<br>Name | Geographical<br>Distribution |
|--------------------|--------|-----------------------------|--------------------------------|---------------|------------------------------|
| Birds              |        |                             |                                |               |                              |
|                    |        | Phapitreron leucotis        | White-eared Brown Dove         |               | Endemic                      |
|                    |        | Loriculus<br>philippinensis | Philippine Hanging Parrot      |               | Endemic                      |
|                    |        | Dasylophus<br>superciliosus | Red-crested Malkoha            |               | Endemic                      |
|                    |        | Lepidogrammus<br>cumingi    | Scale-feathered malkoha        |               | Endemic                      |
|                    |        | Centropus viridis           | Philippine Coucal              |               | Endemic                      |
|                    |        | Otus megalotis              | Luzon Lowland Scops-owl        |               | Endemic                      |
|                    |        | Otus longicornis            | Luzon Highland Scops owl       |               | Endemic                      |
|                    |        | Collocalia troglodytes      | Pygmy Swiftlet                 |               | Endemic                      |
|                    |        | Actenoides lindsayi         | Spotted Kingfisher             |               | Endemic                      |
|                    |        | Buceros hydrocorax          | Northern Rufous Hornbill       |               | Endemic                      |
|                    |        | Picoides maculatus          | Philippine Pygmy<br>Woodpecker |               | Endemic                      |
|                    |        | Pycnonotus urostictus       | Yellow0wattled Bulbul          |               | Endemic                      |
|                    |        | Ixos philipinus             | Philippine Bulbul              |               | Endemic                      |
|                    |        | Parus elegans               | Elegant tit                    |               | Endemic                      |
|                    |        | Thabdornis grandis          | Long-billed Rhabdornis         |               | Endemic                      |
|                    |        | Stachyris whiteheadi        | Chestnut-faced Babbler         |               | Endemic                      |
|                    |        | Rhycornis bicolor           | Luzon Water-redstart           |               | Endemic                      |
|                    |        | Cettia seebohmi             | Philippine Bush-warbler        |               | Endemic                      |
|                    |        | Orthomus derbianus          | Grey-backed Tailorbird         |               | Endemic, Luzon<br>Endemic    |
|                    |        | Eumyias panayensis          | Island flycatcher              |               | Endemic, Luzon<br>Endemic    |
|                    |        | Rhipudura cyaniceps         | Blue-headed fantail            |               | Endemic, Luzon<br>Endemic    |
|                    |        | Pachycephala<br>albiventris | Green-backed Whistler          |               | Endemic, Luzon<br>Endemic    |
|                    |        | Lanius validiriostris       | Mountain Shrike                |               | Endemic, Luzon<br>Endemic    |
|                    |        | Sarcops calvus              | Coleto                         |               | Endemic, Luzon<br>Endemic    |
|                    |        | Aethopyga<br>pulcherrima    | Metallic-winged Sunbird        |               | Endemic, Luzon<br>Endemic    |
|                    |        | Dicaeum australe            | Red-striped flowerpcker        |               | Endemic, Luzon<br>Endemic    |
|                    |        | Dicaeum pygmaeum            | Pygmy Pflowerpecker            |               | Endemic, Luzon<br>Endemic    |
|                    |        | Dicaeum hypoleucum          | Buzzing Flowerpecker           |               | Endemic, Luzon<br>Endemic    |
|                    |        |                             |                                |               |                              |

**Table 1.19.1b** List of Known Fauna in Balbalasang Balbalan National Park As of 2019 (continued)

| Taxonomic<br>Class | Family            | Scientific Name                 | Common Name                     | Local<br>Name       | Geographical<br>Distribution |
|--------------------|-------------------|---------------------------------|---------------------------------|---------------------|------------------------------|
| Amphibians         |                   |                                 |                                 |                     |                              |
|                    | Dicroglossidae    | Limnonected macrocephalus       | Luzon Fanged Frog               | Bulbol              |                              |
|                    |                   | Occidozygalaevis                | Puddle Frog                     | Kit-kite/<br>Toktok |                              |
|                    | Ceratobatrachidae | Platymantis dorsalis            | Common Forest Frog              |                     |                              |
|                    | Ranidae           | Sanguirana luzonensis           | Luzon stream Frog               | Kadjao              |                              |
|                    |                   | Sanguiranan sp.                 |                                 | Ayaba               |                              |
|                    |                   | Sanguirana igorota              | Balbalan Frog                   |                     |                              |
|                    | Microhylidae      | Kaloula kalingensis             | Kalinga Narrow Mouthed<br>Frog  |                     |                              |
|                    |                   | Kaloula picta                   | Painted Narrow Mouthed<br>Frog  | Katsaw              |                              |
|                    | Rhacophoridae     | Polypedates<br>leucomystax      | Common Tree Frog                | Pilak               |                              |
| Mammals            |                   |                                 |                                 |                     |                              |
|                    |                   | Cervus philippinensis           | Philippine brown deer           |                     | Endemic                      |
|                    |                   | Ptenochirus lofori              | Musky fruit bat                 |                     | Endemic                      |
|                    |                   | Sus philippinensis              | Philippine pig                  |                     | Endemic                      |
|                    |                   | Polyramus pallidus              | Cordillera Giant cloud rat      |                     | Endemic                      |
|                    |                   | Apomys sp. Abrae                | Cordillera greater forest mouse |                     | Endemic                      |
|                    |                   | Apomys sp. C.                   | Lesser forest mouse             |                     | Endemic                      |
|                    |                   | Rattutrattus<br>norvigicus      | Common brown rat                |                     | Endemic                      |
|                    |                   | Ratus argentiventer             | Highland rats                   |                     | Endemic                      |
|                    |                   | Batomys granti                  | Luzon hairy-tailed rat          |                     | Endemic                      |
|                    |                   | Acerodon jubanatus              | Golden crowned flying fox       |                     | Endemic                      |
|                    |                   | Bullimus luzonicus              | Large forest rat                |                     | Endemic                      |
| Reptiles           |                   |                                 |                                 |                     |                              |
|                    | Agamidae          | Bronchocela<br>marmorata        | Crested Lizard                  | Takka               |                              |
|                    | Scincidae         | Eutropics mutifasciata          | Common sun skink                |                     |                              |
|                    | Colubridae        | Ahaetulla prasina praceocularis | Vine snake                      | Ay-ayapat           |                              |
|                    | Typhlopidae       | Acutotyphlophs banaorum         | Banao blind snake               |                     |                              |
|                    | Viperidae         | Trimeresurus<br>Flavomaculatus  | Pit viper                       | Minugong            |                              |

**Table 1.19.2a** List of Known Flora in Marcos Highway National Park As of 2019 (continued)

| Pant Form | Family           | Scientific Name          | Common Name         |
|-----------|------------------|--------------------------|---------------------|
| Tree      | Actinidiaceae    | Saurauia elegans         | Uyok                |
| Tree      | Anacardiaceae    | Shorea contorta          | White Lauan         |
| Tree      | Anacardiaceae    | Mangifera indica         | Mango               |
| Tree      | Anonaceae        | Annona muricata          | Guyabano            |
| Tree      | Anonaceae        | Annona squamosa          | Atis                |
| Tree      | Apocynaceae      | Alstonia scholaris       | Dita                |
| Tree      | Caricaceae       | Carica papaya            | Papaya              |
| Tree      | Casuarinaceae    | Casuarina equisetifolia  | Agoho               |
| Tree      | Combretaceae     | Terminalia catappa       | Talisai             |
| Tree      | Dipterocarpaceae | Shorea polysperma        | Tanguile            |
| Tree      | Euphorbiaceae    | Tectona grandis          | Teak                |
| Tree      | Fabaceae         | Piliostigma malabaricum  | Alibangbang         |
| Tree      | Fabaceae         | Pterocarpus indicus      | Narra               |
| Tree      | Fabaceae         | Albizia procera          | Akleng parang       |
| Tree      | Fabaceae         | Leucaena leucocephala    | lpil-ipil           |
| Tree      | Fabaceae         | Flemingia macrophylla    | Flemingia           |
| Tree      | Fabaceae         | Cassia siamea            | Thailand Shower     |
| Tree      | Fabaceae         | Senna spectabilis        | Anchoan Dilaw       |
| Tree      | Fabaceae         | Tamarindus indicus       | Tamarind            |
| Tree      | Fabaceae         | Samanea saman            | Rain Tree           |
| Tree      | Fagaceae         | Quercus variabilis       | Oak Tree            |
| Tree      | Lamiaceae        | Gmelina arborea          | Yemane              |
| Tree      | Lauraceae        | Persia americana         | Avocado             |
| Tree      | Lythraceae       | Lagerstroemia speciosa   | Banaba              |
| Tree      | Meliaceaae       | Lancium domesticum       | Lansones            |
| Tree      | Meliaceae        | Swietenia macrophylla    | Mahogany            |
| Tree      | Meliaceae        | Sandoricum koetjape      | Santol              |
| Tree      | Moraceae         | Artocarpus heterophylla  | Jack Fruit          |
| Tree      | Moreceae         | Ficus nota               | Tibig               |
| Tree      | Moreceae         | Ficus balete             | Balete              |
| Tree      | Myrtaceae        | Eucalyptus camaldulensis | Eucalyptus, Red Gum |
| Tree      | Myrtaceae        | Psidium guajava          | Guava               |
| Tree      | Myrtaceae        | Syzygium cumini          | Lomboy/Duhat        |
| Tree      | Phyllantaceae    | Bischofia javanica       | Tuai                |
| Tree      | Rotataceae       | Citrus grandis           | Pomelo              |
| Tree      | Rubiaceae        | Coffea canephora         | Robusta Coffee      |
| Tree      | Rutaceae         | Citrus aurantium         | Orange              |
| Tree      | Rutaceae         | Citrus lemon             | Lemon               |
| Tree      | Sapindaceae      | Samanea saman            | Acacia              |
| Tree      | Sapindaceae      | Nephelium lappaceum      | Rambutan            |
| Tree      | Sapindaceae      | Dimocarpus longan        | Longgan             |
| Tree      | Sapotaceae       | Chrysophylium cainito    | Caimito             |

| Local Name | Conservation Status          | Geographical Distribution |
|------------|------------------------------|---------------------------|
|            |                              | Native                    |
|            | Critically Endangered (IUCN) | Endemic                   |
|            | Data Deficient (IUCN)        | Introduced                |
|            |                              | Native                    |
|            |                              | Introduced                |
|            | Least Concern (IUCN)         |                           |
|            | Data Deficient (IUCN)        |                           |
|            | Least Concern (IUCN)         | Native                    |
|            |                              | Native                    |
|            | Critically Endangered (IUCN) | Endemic                   |
|            | Critically Endangered (IUCN) | Endemic                   |
|            |                              | Endemic                   |
|            | Vulnerable (IUCN)            | Endemic, Native           |
|            | Least Concern (IUCN)         | Native                    |
|            |                              | Introduced                |
|            |                              | Native                    |
|            | Least Concern (IUCN)         | Native                    |
|            | Least Concern (IUCN)         |                           |
|            | Least Concern (IUCN)         |                           |
|            |                              |                           |
|            | Least Concern (IUCN)         |                           |
|            |                              | Native                    |
|            | Least Concern (IUCN)         | Native                    |
|            |                              |                           |
|            | Least Concern (IUCN)         | Native                    |
|            | Vulnerable (IUCN)            |                           |
|            | Least Concern (IUCN)         | Native                    |
|            | Least Concern (IUCN)         | Native                    |
|            |                              | Native                    |
|            |                              | Native                    |
|            |                              |                           |
|            | Least Concern (IUCN)         | Introduced                |
|            |                              | Native                    |
|            | Least Concern (IUCN)         | Native                    |
|            | Least Concern (IUCN)         | Native                    |
|            | Least Concern (IUCN)         |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              | Native                    |
|            | Near Threatened (IUCN)       | Native                    |
|            |                              | Indigenous                |

**Table 1.19.2a List of Known Flora in Marcos Highway National Park** As of 2019 (continued)

| Pant Form       | Family       | Scientific Name          | Common Name       |
|-----------------|--------------|--------------------------|-------------------|
| Tree            | Sapotaceae   | Manilkara sapota         | Chico             |
| Tree            | Tiliaceae    | Microsis philippinensis  | Balukok           |
| Herb            | Apiaceae     | Centalla asiatica        | Takip kuhol       |
| Fern            | Marattiaceae | Pteridium aquilinum      | Giant Fern        |
| Flowering Plant | Asteraceae   | Ageratina adenophora     | Bangbangsit       |
| Flowering Plant | Asteraceae   | Tithonia diversiflora    | Mirasol/Sunflower |
| Flowering shrub | Asteraceae   | Chromolaena odorata      | Hagonoy           |
| Shrub           | Betulaceae   | Alnus maritima           | Alnus             |
| Shrub           | Fabaceae     | Calliandra calothyrsus   | Calliandra        |
| Shrub           | Fabaceae     | Calliandra calothyrsus   | Calliandra        |
| Grass           | Poaceae      | Bambusa blumeana         | Kauayan tinik     |
| Grass           | Poaceae      | Bambusa vulgaris         | Kauayang kiling   |
| Grass           | Poaceae      | Dendrocalamus merilliana | Bayog             |
| Grass           | Poaceae      | Miscanthus sinensis      | Rono              |
| Grass           | Poaceae      | Paspalum conjagatum      | Carabao Grass     |
| Grass           | Poaceae      | Themeda triandra         | Samsamon          |
| Grass           | Poaceae      | Imperata cylindrica      | Cogon             |
| Grass           | Poaceae      | Sarchrum spontaneum      | Talahib           |
| Grass           | Poaceae      | Andropogon aciculatus    | Amorseco          |
| Palm            | Palmae       | Cocos nucifera           | Coconut           |

| Local Name | Conservation Status  | Geographical Distribution |
|------------|----------------------|---------------------------|
|            |                      | Introduced                |
|            |                      | Native                    |
|            | Least Concern (IUCN) | Native                    |
|            |                      | Native                    |
|            |                      | Introduced                |
|            |                      | Introduced                |
|            |                      | Introduced                |
|            | Endandered (IUCN)    |                           |
|            |                      | Introduced                |
|            |                      | Exotic                    |
|            |                      | Native                    |
|            | Least Concern (IUCN) | Native                    |
|            |                      | Native                    |
|            |                      | Native                    |

**Table 1.19.2b** List of Known Fauna in Marcos Highway National Park As of 2019

| Taxonomic<br>Class | Family       | Scientific Name          | Local/Common Name                 | Conservation<br>Status (IUCN) | Geographical<br>Distribution |
|--------------------|--------------|--------------------------|-----------------------------------|-------------------------------|------------------------------|
|                    | Psittacidae  | Prioniturus montanus     | Luzon racket-tail parrot          | Near threatened*              |                              |
|                    | Strigidae    | Otus longicornis         | Luzon scops owl                   | Near threatened*              |                              |
|                    | Phasianidae  | Gallus gallus            | Wild chicken                      | Least concern*                |                              |
|                    | Passeridae   | Passer domesticus        | House sparrow                     | Least concern*                |                              |
|                    | Estrildidae  | Lonchura atricapilla     | Maya                              | Least concern*                |                              |
|                    | Dicaeidae    | Dicaeum anthonyi         | Flame-crowned<br>flowerpecker     | Near threatened*              |                              |
|                    | Pycnonotidae | Hypsipetes philippinus   | Philippine bulbul                 | Least concern*                |                              |
|                    | Zosteropidae | Zosterornis whiteheadi   | Chestnut-faced babbler            | Least concern*                |                              |
|                    | Cervidae     | Cervus mariannus         | Philippine brown deer             | Vulnerable*                   |                              |
|                    | Suidae       | Sus philippinensis       | Philippine warty pig              | Vulnerable*                   |                              |
|                    | Muridae      | Phloeomys pallidus       | Northern Luzon Giant<br>cload rat | Least concern*                |                              |
|                    | Muridae      | Apomys abrae             | Luzon Cordillera forest mouse     | Least concern*                |                              |
|                    | Muridae      | Rattus norvegicus        | Common brown rat                  | Least concern*                |                              |
|                    | Muridae      | Batomys granti           | Luzon hairy-tailed rat            | Least concern*                |                              |
|                    | Pteropodidae | Acerodon jubatus         | Giant Golden Crown<br>floying fox | Endangered Cites I            |                              |
|                    | Muridae      | Bullimus luzonicus       | Large Luzon forest rat            | Least concern*                |                              |
|                    | Elapidae     | Naja naja philippinensis | Philippine common cobra           | Endangered Cites II           |                              |
|                    | Varanidae    | Varanus salvator         | Water Monitor Lizard              | Threatened Cites II*          |                              |

**Table 1.19.3a** List of Known Flora in Upper Agno River National Park As of 2019

| Plant Form | Family           | Scientific Name          | Common Name         |
|------------|------------------|--------------------------|---------------------|
| Tree       | Sterculiaceae    | Pterocymbium tinctorium  |                     |
| Tree       | Fabaceae         | Erythrina crista-galii   | Dap-dap             |
| Tree       | Apocynaceae      | Alstonia scholaris       | Dita                |
| Tree       | Moraceae         | Ficus benguetensis       | Alumit              |
| Tree       | Euphorbiaceae    | Macaranga grandifolia    | Takip-asin          |
| Tree       | Moraceae         | Ficus coronata           | Sandpaper fig       |
| Tree       | Apocynaceae      | Alstonia scholaris       | Dita                |
| Tree       | Anacardiaceae    | Pistasia chinensis       | Sangilo             |
| Tree       | Moraceae         | Ficus septica            | Hauili              |
| Tree       | Pinaceae         | Pinus kesiya             | Benguet Pine        |
| Tree       | Sapindaceae      | Acacia auricoliformis    | Japanese Acacia     |
| Tree       | Betulaceae       | Alnus maritimma          | Alder               |
| Tree       | Fabaceae         | Calliandra calothyrsus   | Calliandra          |
| Tree       | Fabaceae         | Piliostigma malabaricum  | Alibangbang         |
| Tree       | Myrtaceae        | Eucalyptus camaldulensis | Eucalyptus, Rud Gem |
| Tree       | Casuarinaceae    | Casuarina equisitifolia  | Agoho               |
| Tree       | Phillantaceae    | Bischofia javanica       | Tuai                |
| Tree       | Meliaceae        | Sweitenia macrophylla    | Mahogany            |
| Tree       | Sapindaceae      | Samanea saman            | Acacia              |
| Tree       | Dipterocarpaceae | Shorea polysperma        | Tanguile            |
| Tree       | Fagaceae         | Quercus variabilis       | Oak Tree            |
| Tree       | Anacardiaceae    | Anacardium occidentale   | Kasui               |
| Tree       | Lythraceae       | Lagerstoemia speciosa    | Banaba              |
| Tree       | Anonaceae        | Annona muricata          | Guyabano            |
| Tree       | Fagaceae         | Pterocarpus indicus      | Narra               |
| Tree       | Lamiaceae        | Gmelina arborea          | Yemane              |
| Tree       | Fagaceae         | Albizia procera          | Akleng Parang       |
| Tree       | Combretaceae     | Terminalia catappa       | Talisai             |
| Tree       | Fabaceae         | Ficus nato               | Tibig               |
| Tree       | Moraceae         | Pistacia chinensis       | Sangilo             |
| Tree       | Anacardiaceae    | Mangifera indica         | Mango               |
| Tree       | Sapotaceae       | Chrysophilium caimito    | Caimito             |
| Tree       | Myrtaceae        | Psidium guajava          | Guava               |
| Tree       | Fabaceae         | Tamarindus indicus       | Tamarind            |
| Tree       | Rotataceae       | Citrus grandis           | Pomelo              |
| Tree       | Meliaceae        | Sandoricum koeptjape     | Santol              |
| Tree       | Moraceae         | Artocarpus heterophyllus | Jack Fruit          |
| Tree       | Lauraceae        | Persia americana         | Avocado             |
| Tree       | Meliaceae        | Lansium domesticum       | Lanzones            |
| Tree       | Bombacaceae      | Ceiba pentandra          | Kapok               |
| Tree       | Fabaceae         | Leucaena leucacephala    | lpil-ipil           |
| Tree       | Fabaceae         | Flemingia macrophylla    | Flemigia            |

| Local Name | Concernation Status (ILICAI) | Coornentical Distribution |
|------------|------------------------------|---------------------------|
| Local Name | Conservation Status (IUCN)   | Geographical Distribution |
|            |                              | Nativa                    |
|            |                              | Native                    |
|            |                              | F. J                      |
|            |                              | Endemic                   |
|            |                              | Native                    |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              | Native                    |
|            | Least Concern                | Endemic                   |
|            | Least Concern                |                           |
|            | Endangered                   |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              | Vulnerable                |
|            |                              |                           |
|            | Endemic                      | Critically endangered     |
|            |                              | , ,                       |
|            | Native                       |                           |
|            | Native                       |                           |
|            |                              |                           |
|            | Endemic                      | Vulnerable                |
|            |                              | 74                        |
|            | Native                       |                           |
|            | Native                       |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              | Data deficient            |
|            |                              | Data deficient            |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |
|            |                              |                           |

**Table 1.19.3a** List of Known Flora in Upper Agno River National Park As of 2019 (continued)

| Plant Form | Family                                 | Scientific Name           | Common Name           |
|------------|----------------------------------------|---------------------------|-----------------------|
| Ггее       | Fabaceae                               | Cassia siamea             | Thailand Shower       |
| Ггее       | Fabaceae                               | Cassia spectabilis        | Anchoan Dilaw         |
| Tree       | Moraceae                               | Ficus irisana             | Aplas                 |
| Tree       | Theaceae                               | Camellia sinensis         | Tsa                   |
| /ine       | Dioscoreaceae                          | Dioscorea bulbifera       | Air Potato            |
| Herb       | Asteraceae                             | Matricaria chamomilla     | Chamomile             |
| Fern       | Cyatheceae                             | Aspidium barometz         | Golden Chicken Fern   |
| Fern       | Onocleaceae                            | Matteuccia struthiopteris | Ostrich fern          |
| ern        | Thelyptaredaceae Christella parasitica |                           | Ivory Coast           |
| Fern       | Aspleniaceae                           | Asplenium nidus           | Bird's Nest Fern      |
| Fern       | Nephrolepidaceae                       | Polypodium cordifolium    | Tuberous sword fern   |
| Fern       | Polypodiaceae                          | Adiantum cuadatum         | Alambrillong-Gubat    |
| Fern       | Pteridaceae                            | Maidenhair-fern-Adiantum  | Walking Fern          |
| Fern       | Polypodiaceae                          | Chrysopteris phymatodes   | Lizard's Foot         |
| Fern       | Pteridaceae                            | Adiantum diaphanum        | Filmy Maidenhair Fern |
| Shrub      | Myrtaceae                              | Tristaniopsis laurina     | Water Gum             |
| Shrub      | Celastraceae                           | Celastrus scandens        | American Bittersweet  |
| Shrub      | Rhamnaceae                             | Berchemia scandens        | Alabama supllejack    |
| Grass      | Poaceae                                | Miscantus sinensis        | Rado                  |
| Grass      | Poaceae Miscanthus chinensis           |                           | Chinese Silver Grass  |
| Grass      | Poaceae                                | Gigantochloa levis        | Bolo Bamboo           |
| Grass      | Poaceae                                | Themeda gigantea          | Kangaroo Grass        |
| Grass      | Asparagceae                            | Ophiopogon planiscapus    | Black Mondo Grass     |
| Orchids    | Orchidaceae                            | Dendrobium anosmum        | Gintong talutot       |
| Liverworts | Splachnaceae                           | Splachum waberbaueri      |                       |
| Moss       | Urticaceae                             | Pilea micropyylla         | Alabong               |
| Palm       | Arecaceae                              | Caryota                   | Fishtail Palm         |
|            | Asparagaceae                           | Asparagus asparagoides    | Bridal Creeper        |
|            | Chloranthaceae                         | Sarcandra glabra          | Gipas                 |
|            | Actinidaceae                           | Sauraria elegans          | Uyok                  |
|            | Tiliaceae                              | Mocrosis philippinensis   | Balukok               |
|            | Poaceae                                | Bambusa blumeana          | Kauayan Tinik         |
|            | Poaceae                                | Bambusa vulgaris          | Kauayan Kiling        |
|            | Poaceae                                | Dendrocalamus merillianus | Bayog                 |
|            | Poaceae                                | Gigantchloa levis         | Bolo                  |
|            | Marattiaceae                           | Pteridium aquilinum       | Giant Fern            |
|            | Poaceae                                | Paslalum conjagatum       | Carabao Grass         |
|            | Asteraceae                             | Ageratina edenphora       | Bangbangsit           |
|            | Asteraceae                             | Tithonia diversiflora     | Mirasol/Sunflower     |
|            | Poaceae                                | Themeda triandra          | Samsamon              |
|            | Poaceae                                | Imperata cylindrica       | Cogon                 |
|            | Poaceae                                | Pennisitum clandistinum   | Kikuyo                |

| Local Name | Conservation Status (IUCN) | Geographical Distribution |
|------------|----------------------------|---------------------------|
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
| Borabor    | Native                     |                           |
|            | Native                     |                           |
|            |                            |                           |
| Pasgak     |                            |                           |
| Bayabang   | Endemic                    |                           |
|            | Endemic                    |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
| _          |                            |                           |
| Rono       |                            |                           |
| Talnag     |                            |                           |
| lailiag    |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
| Pugahan    | Endemic                    |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |

**Table 1.19.3a** List of Known Flora in Upper Agno River National Park As of 2019 (continued)

| Plant Form | Family       | Scientific Name        | Common Name   |
|------------|--------------|------------------------|---------------|
|            | Poaceae      | Sarchrum spontaneum    | Talahib       |
|            | Asteraceae   | Chromonaela odorata    | Hagonoy       |
|            | Apiaceae     | Centella asiatica      | Takip kuhol   |
|            | Poaceae      | Andropogon Acciculatus | Amorseco      |
|            | Nepenthaceae | Nepenthes bellii       | Pitcher Plant |
|            | Palmae       | Cocos nucifera         | Coconum       |

| Local Name | Conservation Status (IUCN) | Geographical Distribution |
|------------|----------------------------|---------------------------|
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            |                            |                           |
|            | Endangered                 |                           |

**Table 1.19.3b** List of Known Fauna in Upper Agno River National Park As of 2019

| Taxonomic<br>Class | Family | Scientific Name               | Common Name                          | Geographical Distribution |
|--------------------|--------|-------------------------------|--------------------------------------|---------------------------|
| Birds              |        |                               |                                      |                           |
|                    |        | Otus megalutis                | Scops Owl                            | Endemic                   |
|                    |        | Megapodius cumingii           | Kusili/Philippine Scrubfowl          | Endemic                   |
|                    |        | Actenoides lindsayi           | Woodpecker Bird                      | Endemic                   |
| Amphibian          |        |                               |                                      |                           |
|                    |        | Alcalus mariae                | Palawan-Eastern Frog                 | Endemic, Palawan Island   |
| Mammal             |        |                               |                                      |                           |
|                    |        | Rusa Marianna                 | Philippine Deer                      | Endemic                   |
|                    |        | Megachiroptera                | Fruit Bats                           | Endemic                   |
|                    |        | Phloeomys pallidus            | Cloud Rats                           | Endemic                   |
| Reptile            |        |                               |                                      |                           |
|                    |        | Dendrelaphis<br>caudolineatus | Mountain Snake                       | Endemic                   |
|                    |        | Naja Philippinensis           | Philippine Cobra Snake               | Endemic, Northern Region  |
|                    |        | Varanus bitatawa              | Northern Sierra Madre forest monitor | Endemic                   |
| Insects            |        |                               |                                      |                           |
|                    |        | Neodythemis nyungwe           | Nyungwe Junglewatcher                |                           |
|                    |        | Araneidae                     | Orbweaver                            |                           |
|                    |        | Ocybadistes knightorum        | Black Grass-dark Butterfly           |                           |
|                    |        | Trilophidia annulata          |                                      |                           |
|                    |        | Cicadoidea                    | Cicada                               |                           |
|                    |        | Halyomorpha halys             | Brown marmorated stink bug           |                           |
|                    |        | Lithobius forficatus          | Brown Centipede                      |                           |
|                    |        | Orthomorpha coarctata         | Long-flange Millipede                |                           |

**Table 1.19.4a List of Known Flora in Mt. Data National Park** As of 2019 (continued)

| Plant Form | Family          | Scientific Name            | Common Name    | Local Name | Geographical Conservation |
|------------|-----------------|----------------------------|----------------|------------|---------------------------|
| Tree       | Actinidiaceae   | Saurauia elegans           | Uyok           |            | Native                    |
| Tree       | Actinidiaceae   | Saurauia sp. 2             |                |            |                           |
| Tree       | Actinidiaceae   | Saurauia sp. 3             |                |            |                           |
| Tree       | Actinidiaceae   | Saurauia sp. 4             |                |            |                           |
| Tree       | Anacardiaceae   | Bauchanania arborescens    | Balinghasai    |            | Native                    |
| Tree       | Araliaceae      | Schefflera insularum       | Galamai-amo    |            | Endemic                   |
| Tree       | Asteracaceae    | Tree sp. 1                 |                |            |                           |
| Tree       | Asteracaceae    | Tree sp. 2                 |                |            |                           |
| Tree       | Betulaceae      | Alnus japonica             | Japanese alder | Arnus      | Native                    |
| Tree       | Boraginaceae    | Codia myxa                 | Indian Cherry  |            |                           |
| Tree       | Burseraceae     | Canarium sp. 1             |                |            |                           |
| Tree       | Burseraceae     | Canarium sp. 2             |                |            |                           |
| Tree       | Buxaceae        | Tree sp. 1                 |                |            |                           |
| Tree       | Caprifoliaceae  | Viburnum coriaceum         |                |            | Native                    |
| Tree       | Caprifoliaceae  | Viburnum luzonicum         | Atelba         |            | Endemic                   |
| Tree       | Caprifoliaceae  | Viburnum<br>odonatissimum  | ldog           |            |                           |
| Tree       | Caprifoliaceae  | Viburnum sp. 1             |                |            |                           |
| Tree       | Caprifoliaceae  | Viburnum sp. 2             |                |            |                           |
| Tree       | Caprifoliaceae  | Viburnum sp. 3             |                |            |                           |
| Tree       | Clethraceae     | Clethra luzonica           |                |            | Native                    |
| Tree       | Clethraceae     | Clethra sp. 1              |                |            |                           |
| Tree       | Clusiaceae      | Garcinia sp. 1             |                |            |                           |
| Tree       | Daphniplylaceae | Daphniplyllum gracile      |                |            | Native                    |
| Tree       | Ericaceae       | Rhododendron sp. 1         |                |            |                           |
| Tree       | Ericaceae       | Vaccinium barandanum       |                |            | Endemic                   |
| Tree       | Ericaceae       | Vaccinium cumingianum      |                |            | Native                    |
| Tree       | Ericaceae       |                            |                |            | Native                    |
| Tree       | Ericaceae       | Vaccinium sp. 1            |                |            |                           |
| Tree       | Ericaceae       | Vaccinium sp. 2            | Tenggel        |            |                           |
| Tree       | Ericaceae       | Tree sp. 1                 |                |            |                           |
| Tree       | Euphorbiaceae   | Antidesma ghaesembilla     | Binayuyo       |            | Native                    |
| Tree       | Euphorbiaceae   | Claoxylon reburceus        |                |            |                           |
| Tree       | Euphorbiaceae   | Homalanthus alpinus        | Malabalanti    |            | Endemic                   |
| Tree       | Euphorbiaceae   | Homalanthus<br>megaphyllus |                |            |                           |
| Tree       | Fagaceae        | Lithocarpus coopertus      | Ulayan         |            | Endemic                   |
| Tree       | Fagaceae        | Lithocarpus jardanae       | Katiluk        |            |                           |
| Tree       | Fagaceae        | Lithocarpus luzoniensis    | Kilog          |            | Endemic                   |
| Tree       | Fagaceae        | Lithocarpus oligarpus      | Kitaldag       |            |                           |
| Tree       | Gerneriaceae    | Aeschyranthus sp. 1        |                |            |                           |
| Tree       | Gerneriaceae    | Cyrtandra sp. (1)          |                |            |                           |

**Table 1.19.4a** List of Known Flora in Mt. Data National Park As of 2019 (continued)

| Plant Form | Family         | Scientific Name              | Common Name  | Local Name | Geographical<br>Conservation |
|------------|----------------|------------------------------|--------------|------------|------------------------------|
| Tree       | Gerneriaceae   | Cyrtandra sp. (2)            |              |            |                              |
| Tree       | Gerneriaceae   | Cyrtandra sp. (3)            |              |            |                              |
| Tree       | Hamalenidaceae | Polyosma lineabractea        |              |            |                              |
| Tree       | Lamiaceae      | Comphostemma philippinariium |              |            |                              |
| Tree       | Lamiaceae      | Plectranthus sp.1            |              |            |                              |
| Tree       | Lamiaceae      | Salvia sp. 1                 |              |            |                              |
| Tree       | Lamiaceae      | Tree sp. 1                   |              |            |                              |
| Tree       | Lauraceae      | Litsea perrotetiin           | Dumoplas     |            | Endemic                      |
| Tree       | Lauraceae      | Litsea perrotetii            | Marang       |            | Endemic                      |
| Tree       | Lauraceae      | Neolitsea villosa            |              |            | Endemic                      |
| Tree       | Lauraceae      | Neolitsea vulcanica          |              |            | Endemic                      |
| Tree       | Leeceae        | Leea magnifolia              |              |            | Endemic                      |
| Tree       | Melastomaceae  | Astronia quadrangulata       | Unknown      |            |                              |
| Tree       | Melastomaceae  | Medenilla cordata            |              |            | Endemic                      |
| Tree       | Moraceae       | Ficus benguetensis           |              |            | Endemic                      |
| Tree       | Moraceae       | Ficus sp.1                   |              |            |                              |
| Tree       | Moraceae       | Ficus sp.2                   |              |            |                              |
| Tree       | Myrsinaceae    | Ardisia sp. 1                |              |            |                              |
| Tree       | Myrsinaceae    | Ardisia sp. 2                |              |            |                              |
| Tree       | Myrsinaceae    | Ardisia sp. 3                |              |            |                              |
| Tree       | Myrsinaceae    | Ardisia sp. 4                |              |            |                              |
| Tree       | Myrtaceae      | Decaspermum sp. 1            |              |            |                              |
| Tree       | Myrtaceae      | Syzygium santosii            |              |            | Endemic                      |
| Tree       | Myrtaceae      | Syzygium subcaudatum         |              |            | Endemic                      |
| Tree       | Myrtaceae      | Syzygium sp. 1               |              |            |                              |
| Tree       | Myrtaceae      | Syzygium sp. 2               |              |            |                              |
| Tree       | Myrtaceae      | Syzygium sp. 3               | Vertek babae |            |                              |
| Tree       | Myrtaceae      | Prumnopitys amara            | Black Pine   |            | Native                       |
| Tree       | Rosaceae       | Prunus grisea                | Lago         |            | Native                       |
| Tree       | Rubiaceae      | Hedyotis benguetensis        |              |            | Native                       |
| Tree       | Rubiaceae      | Psychotoria sp. 1            |              |            |                              |
| Tree       | Rubiaceae      | Psychotoria sp. 2            |              |            |                              |
| Tree       | Rubiaceae      | Psychotoria sp. 3            |              |            |                              |
| Tree       | Rutaceae       | Citrus sp. 1                 | Fukog        |            |                              |
| Tree       | Rutaceae       | Evodia retussa               | <u> </u>     |            |                              |
| Tree       | Rutaceae       | Evodia sp. 1                 |              |            |                              |
| Tree       | Rutaceae       | Evodia sp. 2                 |              |            |                              |
| Tree       | Rutaceae       | Melicope triphylla           |              |            | Native                       |
| Tree       | Rutaceae       | Skimmia philippinensis       |              |            | Endemic                      |
| Tree       | Smilacaceae    | Smilax sp. 1                 |              |            |                              |
| Treesss    | Staphylaceae   | Turpinia ovalifolia          | Unknown      |            | Native                       |
|            |                |                              |              |            |                              |

**Table 1.19.4a** List of Known Flora in Mt. Data National Park As of 2019 (continued)

| Plant Form | Family        | Scientific Name            | Common Name          | Local Name | Geographical<br>Conservation |
|------------|---------------|----------------------------|----------------------|------------|------------------------------|
| Tree       | Taxaceae      | Taxus sumatrana            | Taiwan Yew           |            | Native                       |
| Tree       | Theaceae      | Camellia sp. 1             |                      |            |                              |
| Tree       | Theaceae      | Cleyera japonica           | Japanese cleyera     |            |                              |
| Tree       | Theaceae      | Eurya coriaceae            | Bakig                |            | Native                       |
| Tree       | Theaceae      | Eurya flava                |                      |            |                              |
| Tree       | Theaceae      | Eurya japonica             | East-asian Eurya     |            |                              |
| Tree       | Theaceae      | Eurya sp. 1                |                      |            |                              |
| Tree       | Theaceae      | Three sp. 1                |                      |            |                              |
| Tree       | Thymeliaceae  | Wikstroemia ovata          | Suka                 |            | Endemic                      |
| Shrub      | Acanthaceae   | Shrub sp. 1                |                      |            |                              |
| Shrub      | Actinidiaceae | Saurauia sp. 1             |                      |            |                              |
| Shrub      | Araliaceae    | Aralia bipinnata           | Sugsuga              |            | Native                       |
| Shrub      | Araliaceae    | Schefflera microphylla     |                      |            | Endemic                      |
| Shrub      | Chlorantaceae | Chloranthus gabac          | Gepas                |            |                              |
| Shrub      | Melastomaceae | Melastoma<br>malabathricum | Malabas<br>melastome |            | Native                       |
| Shrub      | Melastomaceae | Melastoma sp. 1            |                      |            |                              |
| Shrub      | Saxifragaceae | Deutzie pulchra            | Beautiful deutzia    |            | Native                       |
| Shrub      | Theaceae      | Thea lanceolata            |                      |            |                              |
| Shrub      | Winteraceae   | Drimys piperata            | Sepal                |            | Native                       |

**Table 1.19.4b** List of Known Fauna in Mt. Data National Park As of 2019

| Taxonomic<br>Class | Family | Scientific Name           | Common Name          | Local/<br>Common<br>Name | Conservation<br>Status (IUCN) | Geographical<br>Distribution |
|--------------------|--------|---------------------------|----------------------|--------------------------|-------------------------------|------------------------------|
| Birds              |        |                           |                      |                          |                               |                              |
|                    |        | Yungipicus<br>maculatus   | Pygmy<br>woodpeckers |                          |                               | Endemic                      |
|                    |        | Hypsipetes<br>philippinus | Philippine bulbul    |                          |                               | Endemic                      |
|                    |        | Bubo philippensis         | Philippine owl       |                          |                               | Endemic                      |
|                    |        | Leucopsar<br>rothschild   | Martinez             |                          |                               | Native                       |
|                    |        | Coturnix coturnix         | Quails               |                          |                               |                              |
| Amphibians         |        |                           |                      |                          |                               |                              |
|                    |        | Anura                     | Frogs                |                          |                               |                              |
| Mammals            |        |                           |                      |                          |                               |                              |
|                    |        |                           | Rats                 |                          |                               |                              |
|                    |        |                           | Mices                |                          |                               |                              |
| Reptiles           |        |                           |                      |                          |                               |                              |
|                    |        |                           | Lizards              |                          |                               |                              |
|                    |        |                           | Snakes               |                          |                               |                              |
|                    |        |                           | Talakup              |                          |                               |                              |

**Table 1.10 List and Status of Protected Areas in CAR** As of 2013

|                                               |                                                                                                                                                  | Issua                    | Issuances              |                  |                                              |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|------------------|----------------------------------------------|
| Protected Area                                | Location                                                                                                                                         | Proc./R.A.               | Date                   | (in<br>hectares) | Remarks                                      |
| Casamata Hill<br>National Park                | Bangued, Abra                                                                                                                                    | Proc. 1305               | 26 Aug 74              | 57               | For Delisting<br>(co-management<br>with LGU) |
| Mt.Data National<br>Park                      | Along Baguio-Bontoc<br>National Road, Benguet,<br>Ifugao; and Kayapa Nueva<br>Vizcaya                                                            | Proc. 65                 | 3 Jun 36               | 5,512            |                                              |
| Mt. Pulag National<br>Park                    | Balbalan, Kalinga, & Nueva<br>Vizcaya                                                                                                            | Proc. 75                 | 20 Feb 87              | 11,550           |                                              |
| Balbalasang-<br>Balbalan National<br>Park     | Balbalan, Kalinga, & Apayao                                                                                                                      | R.A. 6463/<br>Proc. 1357 | 17-Jun-72/<br>9-Dec-74 | 1,338            |                                              |
| Lower Agno<br>Watershed Forest<br>Reserve     | Tuba, Itogon, Benguet &<br>Baguio City. San Manuel and<br>San Nicolas, Pangasinan                                                                | Proc. 2320               | 22 Nov 83              | 39,304           |                                              |
| Upper Agno River<br>Basin Resource<br>Reserve | Atok, Bokod, Buguias, Itogon,<br>Kabayan, Tublay, Kibungan,<br>Latrinidad, Benguet Prov.;<br>Hungduan & Kiangan,Ifugao;<br>Kayapa, Nueva Vizcaya | Proc. 268                | 23 Apr 00              | 77,561           |                                              |
| Marcos Hi-way<br>Watershed Forest<br>Reserve  | Agoo, La Union; Baguio City<br>and Tuba, Benguet                                                                                                 | Proc. 1754               | 22 Jun 78              | 6,105            | For<br>Disestablishment                      |

**Table 1.11** List of Proclaimed Protected Areas Under the National Integrated Protected Areas System (NIPAS) as of 2012

| Region | Name of<br>Protected Area                     | Location                                                                                                                        | Protected<br>Area (in<br>hectares) | Buffer Zone<br>(in<br>hectares) |
|--------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------|
| CAR    | Upper Agno River<br>Basin Resource<br>Reserve | Atok, Buguias, Itogon, Kabayan, Tublay, Kibungan, La<br>Trinidad, Benguet; Hungduan & Kiangan, Ifugao; Kayapa,<br>Nueva Vizcaya | 77,561                             |                                 |

| Total Area (in hectares) |                |                   |                | Proclamation |               |
|--------------------------|----------------|-------------------|----------------|--------------|---------------|
| Terestrial               |                | Marine            |                |              |               |
| Protected<br>Area        | Buffer<br>Zone | Protected<br>Area | Buffer<br>Zone | Number       | Date          |
| 77,561                   |                |                   |                | 268          | 23 April 2000 |

**Table 1.12 Area of Natural Forest by Province** 2015 (area in hectares)

| Landcover Type | Abra    | Apayao  | Benguet | lfugao | Kalinga | Mt. Province | Total   |
|----------------|---------|---------|---------|--------|---------|--------------|---------|
| Closed Forest  | 45,015  | 102,238 | 3,167   | 21,924 | 53,225  | 28,351       | 253,920 |
| Open Forest    | 115,645 | 144,189 | 111,402 | 77,973 | 60,654  | 68,285       | 578,148 |
| Total          | 160,660 | 246,427 | 114,568 | 99,897 | 113,879 | 96,636       | 832,069 |

Source: Department of Environment and Natural Resources - Cordillera Administrative Region

**Table 1.13 Characteristics of Rivers and Streams** as of 2019

| Name of Major<br>River | Name of<br>Tributaries | Location                                                                  | Water<br>Classification | Est.<br>Drainage<br>Area (ha.) | Length<br>(km.) | Discharge<br>Rate<br>(cu.m./sec) |
|------------------------|------------------------|---------------------------------------------------------------------------|-------------------------|--------------------------------|-----------------|----------------------------------|
| Abra River             |                        | Luba, Manabo, Bucay,<br>Tayum, Bangued, Pidigan,<br>Langiden, San Quintin | A                       | 441,682.0                      | 198.0           | 2,300.0                          |
|                        | Tineg River            | Dolores, San Juan, Tineg                                                  | В                       |                                | 96.0            |                                  |
|                        | Saquet River           |                                                                           |                         | 5,670.6                        | 17.6            |                                  |
|                        | Mankayan River         |                                                                           |                         |                                |                 |                                  |
|                        | Collalo River          |                                                                           |                         |                                |                 |                                  |
|                        | Abit River             |                                                                           |                         | 11,025.0                       | 20.0            |                                  |
|                        | Layacan River          |                                                                           |                         | 8,005.0                        | 17.0            |                                  |
|                        | Utep River             |                                                                           |                         | 23,336.0                       | 37.9            |                                  |
|                        | Damanit River          |                                                                           |                         | 11,071.4                       | 38.4            |                                  |
|                        | Ikmin River            |                                                                           |                         | 20,151.0                       | 37.5            |                                  |
|                        | Bucloc River           |                                                                           |                         | 16,250.8                       | 36.3            |                                  |
|                        | Manicbel River         |                                                                           |                         |                                | 28.4            |                                  |
|                        | Saccang River          |                                                                           |                         |                                |                 |                                  |
|                        | Mapisla River          |                                                                           |                         |                                |                 |                                  |
|                        | Malanas River          |                                                                           |                         | 17,786.4                       | 58.0            |                                  |
|                        | Talogtog River         |                                                                           |                         |                                |                 |                                  |
|                        | Sinalang River         |                                                                           |                         | 14,413.3                       | 38.5            |                                  |
|                        | Binongan River         |                                                                           |                         | 45,688.5                       | 60.0            |                                  |
|                        | Palsoguan River        |                                                                           |                         | 19,905.7                       | 44.0            |                                  |
|                        | Bandi River            |                                                                           |                         |                                |                 |                                  |
|                        | Malapa-ao River        |                                                                           |                         | 12,867.7                       | 18.2            |                                  |
|                        | Baay River             |                                                                           |                         | 19,757.0                       | 27.5            |                                  |
|                        | Anayan River           |                                                                           |                         | 14,782.1                       | 26.0            |                                  |
|                        | ,                      |                                                                           |                         |                                |                 |                                  |
| Chico River            | Chico River (Lower)    | Tinglayan, Lubuagan,<br>Tabuk, Pinukpuk                                   | В                       | 409,489.6                      | 103.4           | 38.3                             |
|                        | Saltan River           |                                                                           | В                       |                                | 73.8            | 6.2                              |
|                        | Tanudan River          |                                                                           | Α                       |                                | 38.8            |                                  |
|                        | Pasil River            |                                                                           |                         |                                | 37.7            |                                  |
|                        | Baren River            | Conner                                                                    | В                       |                                | 32.0            |                                  |
|                        |                        |                                                                           |                         |                                |                 |                                  |

**Table 1.13 Characteristics of Rivers and Streams** as of 2019 (continued)

| Name of Major<br>River  | Name of<br>Tributaries        | Location                               | Water<br>Classification | Est.<br>Drainage<br>Area (ha.) | Length<br>(km.) | Discharge<br>Rate<br>(cu.m./sec) |
|-------------------------|-------------------------------|----------------------------------------|-------------------------|--------------------------------|-----------------|----------------------------------|
|                         | Nabuangan River               | Conner                                 | В                       |                                | 38.0            |                                  |
|                         | Matalag River                 |                                        |                         |                                | 43.0            |                                  |
|                         | Purag River                   |                                        |                         |                                | 13.0            |                                  |
|                         | Acutan River                  |                                        |                         |                                | 25.0            |                                  |
|                         | Tabuk River                   |                                        |                         |                                |                 |                                  |
|                         |                               |                                        |                         |                                |                 |                                  |
|                         | Chico River<br>(Upper)        | Bauko, Sabangan, Bontoc                | В                       |                                | 50.0            | 67.1                             |
|                         | Agoyo River                   |                                        |                         |                                | 14.5            | 4.7                              |
|                         | Docligan River                |                                        |                         |                                | 25.6            | 7.9                              |
|                         | Lingoy River                  |                                        |                         |                                | 19.0            | 2.1                              |
|                         | Agudong River                 |                                        |                         |                                | 14.3            | 0.9                              |
|                         | Bayudan River                 |                                        |                         |                                | 15.8            | 0.9                              |
|                         | Malitep river                 |                                        |                         |                                | 6.3             | 0.8                              |
|                         | Barlig river                  |                                        |                         |                                | 33.0            | 2.2                              |
|                         | Amlusong River                |                                        |                         |                                | 12.3            | 0.8                              |
|                         | Balitian River                |                                        |                         |                                | 16.7            | 5.3                              |
|                         |                               |                                        |                         |                                |                 |                                  |
|                         | Bananid River                 |                                        |                         |                                |                 |                                  |
|                         | Taboa river                   |                                        |                         |                                |                 |                                  |
|                         | Bunga River                   |                                        |                         |                                |                 |                                  |
|                         | Bikigan River                 |                                        |                         |                                |                 |                                  |
|                         | Belwagan River                |                                        |                         |                                |                 |                                  |
|                         | Talubin River                 |                                        |                         |                                |                 |                                  |
|                         | Gultron River                 |                                        |                         |                                |                 |                                  |
|                         | Aguid River                   |                                        |                         |                                |                 |                                  |
|                         | Guinaang River                |                                        |                         |                                |                 |                                  |
|                         | Batugan River                 |                                        |                         |                                |                 |                                  |
|                         | Talbok River                  |                                        |                         |                                |                 |                                  |
|                         |                               |                                        |                         |                                |                 |                                  |
| Apayao-<br>Abulug River |                               | Luna, Sta. Marcela, Pudtol,<br>Kabugao | С                       | 265,094.6                      |                 | 54.4                             |
|                         | Acutan River                  | Conner                                 | В                       |                                |                 |                                  |
|                         | Binuan River                  | Kabugao                                |                         |                                |                 |                                  |
|                         | Karagawan River               | Kabugao                                | В                       |                                |                 |                                  |
|                         | Laco River                    | Kabugao                                | В                       |                                |                 |                                  |
|                         | Malabanig River               | Kabugao                                | В                       |                                |                 |                                  |
|                         | Malunog River<br>(Upstream)   | Pudtol                                 | В                       |                                | 21.5            |                                  |
|                         | Malunog River<br>(Downstream) | Luna, Sta. Marcela, Pudtol,<br>Kabugao | С                       |                                |                 |                                  |
|                         | Nagan River                   | Pudtol                                 | AA                      |                                | 24.3            |                                  |

**Table 1.13 Characteristics of Rivers and Streams** as of 2019 (continued)

| Name of Major<br>River | Name of<br>Tributaries      | Location               | Water<br>Classification | Est.<br>Drainage<br>Area (ha.) | Length<br>(km.) | Discharge<br>Rate<br>(cu.m./sec) |
|------------------------|-----------------------------|------------------------|-------------------------|--------------------------------|-----------------|----------------------------------|
|                        | Tumog River<br>(upstream)   | Luna                   | В                       |                                |                 |                                  |
|                        | Tumor River<br>(downstream) | Luna                   | С                       |                                |                 |                                  |
|                        |                             |                        |                         |                                |                 |                                  |
|                        | Ayayao River                |                        |                         |                                | 12.0            |                                  |
|                        | Awan River                  |                        |                         |                                | 12.5            |                                  |
|                        | Malungog River              |                        |                         |                                | 8.1             |                                  |
|                        | Tumalig River               |                        |                         |                                | 14.3            |                                  |
|                        | Bannan River                |                        |                         |                                | 14.5            |                                  |
|                        | Tabayagan River             |                        |                         |                                | 28.5            |                                  |
|                        | Sicapo River                |                        |                         |                                | 21.9            |                                  |
|                        | Dagara River                |                        |                         |                                | 31.9            |                                  |
|                        | Tawit River                 |                        |                         |                                | 51.1            |                                  |
|                        | Maton river                 |                        |                         |                                | 34.4            |                                  |
| Magat River            |                             |                        |                         | 227,374.5                      | 28.0            |                                  |
|                        | Alimit River                | Mayoyao, Aguinaldo     | C                       |                                | 70.0            | 32.9                             |
|                        | Ibulao River                | Lamut, Lagawe, Kiangan | C                       |                                | 27.7            |                                  |
|                        | Lamut River                 | Lamut, Asipulo         | С                       |                                | 41.8            | 12.8                             |
|                        | Pula River                  |                        |                         |                                | 17.3            |                                  |
|                        | Nayon River                 |                        |                         |                                | 10.0            |                                  |
|                        | Lagawe River                |                        |                         |                                |                 |                                  |
|                        | Ambangal Brook              |                        |                         |                                |                 |                                  |
|                        | Sapao River                 |                        |                         |                                |                 |                                  |
|                        | Tawang River                |                        |                         |                                |                 |                                  |
|                        | Mayoyao River               |                        |                         |                                | 9.0             |                                  |
|                        | Bunhian River               |                        |                         |                                |                 |                                  |
|                        | Kiling River                |                        |                         |                                |                 |                                  |
|                        | Ubao River                  |                        |                         |                                |                 |                                  |
|                        | Calupaan River              |                        |                         |                                |                 |                                  |
|                        | Ducligan River              |                        |                         |                                | 6.0             |                                  |
|                        | Ngao-ngao River             |                        |                         |                                | 25.0            |                                  |
|                        | Payawan River               |                        |                         |                                | 6.6             |                                  |
|                        | Bunog River                 |                        |                         |                                | 8.0             |                                  |
|                        | Kinawayanan<br>Creek        |                        |                         |                                | 11.0            |                                  |
|                        | Magulon-<br>Aduyongan River |                        |                         |                                | 19.0            |                                  |
|                        |                             |                        |                         |                                |                 |                                  |
| Siffu-Mallig<br>River  | Siffu River                 | Paracelis              | В                       | 143,242.1                      |                 |                                  |

**Table 1.13 Characteristics of Rivers and Streams** as of 2019 (continued)

| Name of Major<br>River    | Name of<br>Tributaries | Location       | Water<br>Classification | Est.<br>Drainage<br>Area (ha.) | Length<br>(km.) | Discharge<br>Rate<br>(cu.m./sec) |
|---------------------------|------------------------|----------------|-------------------------|--------------------------------|-----------------|----------------------------------|
|                           | Mallig River           | Natonin        | В                       |                                |                 |                                  |
|                           | Saliok River           |                |                         |                                |                 |                                  |
|                           | Viga River             |                |                         |                                |                 |                                  |
|                           | Bacami River           |                |                         |                                |                 |                                  |
|                           | Paracelis River        |                |                         |                                |                 |                                  |
|                           |                        |                |                         |                                |                 |                                  |
| Agno River                |                        | Kabayan, Bokod | Α                       | 128,725.2                      | 117.0           |                                  |
|                           | Ambalanga River        | Itogon         | C                       |                                | 10.7            |                                  |
|                           | Baculongan River       |                |                         |                                |                 |                                  |
|                           | Alenod River           |                | Α                       |                                | 8.0             |                                  |
|                           | Baayan River           |                |                         |                                | 12.6            |                                  |
|                           | Eddet River            |                | Α                       |                                | 8.8             |                                  |
|                           | Alut River             |                |                         |                                | 6.8             |                                  |
|                           | Batan River            |                |                         |                                | 9.7             |                                  |
|                           | Batangban River        |                |                         |                                |                 |                                  |
|                           | Bokod River            |                | Α                       |                                | 18.5            |                                  |
|                           | Bolo River             |                |                         |                                |                 |                                  |
|                           | Labey River            |                |                         |                                |                 |                                  |
|                           | Benneng River          |                |                         |                                | 32.6            |                                  |
|                           | Pito River             |                |                         |                                | 2.9             |                                  |
|                           | Liang River            |                |                         |                                | 6.0             |                                  |
|                           | Tublay River           |                |                         |                                |                 |                                  |
|                           |                        |                |                         |                                |                 |                                  |
| Amburayan<br>River        |                        | Kapangan, Atok | В                       | 60,858.2                       |                 |                                  |
|                           | Maikong River          |                |                         |                                |                 |                                  |
|                           | Natubleng River        |                |                         |                                | 1.8             |                                  |
|                           | Palina River           |                |                         |                                | 10.4            |                                  |
|                           | Bakun River            |                |                         |                                | 33.7            |                                  |
|                           | Mayos River            |                |                         |                                | 5.1             |                                  |
|                           | Ambaledeng River       |                |                         |                                | 21.9            |                                  |
|                           | Tabao River            |                |                         |                                | 4.2             |                                  |
|                           | Abiang River           |                |                         |                                | 5.5             |                                  |
|                           | Pudong River           |                |                         |                                | 7.0             |                                  |
|                           | Sacburoy River         |                |                         |                                | 5.4             |                                  |
|                           | Bagu River             |                |                         |                                | 7.8             |                                  |
|                           | Ominong River          |                |                         |                                | 7.0             |                                  |
|                           |                        |                |                         |                                |                 |                                  |
| Zumigui-<br>Ziwanan River |                        |                |                         | 55,146.9                       |                 |                                  |
|                           | Zumigui River          | Luna           | В                       |                                | 34.2            |                                  |
|                           |                        |                |                         |                                |                 |                                  |

**Table 1.13 Characteristics of Rivers and Streams** as of 2019 (continued)

| Name of Major<br>River | Name of<br>Tributaries             | Location                            | Water<br>Classification | Est.<br>Drainage<br>Area (ha.) | Length<br>(km.) | Discharge<br>Rate<br>(cu.m./sec) |
|------------------------|------------------------------------|-------------------------------------|-------------------------|--------------------------------|-----------------|----------------------------------|
|                        | Ziwanan River                      | Calanasan                           | В                       |                                |                 |                                  |
|                        | Manucotae River                    |                                     |                         |                                | 13.0            |                                  |
|                        | Marag River                        |                                     |                         |                                | 17.0            |                                  |
|                        | Dumayong River                     |                                     |                         |                                | 22.0            |                                  |
|                        | Anocot River                       |                                     |                         |                                |                 |                                  |
|                        | Masil River                        |                                     |                         |                                |                 |                                  |
|                        |                                    |                                     |                         |                                |                 |                                  |
| Aringay River          |                                    |                                     | В                       | 25,939.0                       | 27.0            | 4,215.0                          |
|                        | Asin-Galiano River                 | Tuba                                |                         |                                | 5.3             |                                  |
|                        | Elew River                         |                                     |                         |                                | 7.4             |                                  |
|                        | Abuloy River                       |                                     |                         |                                | 4.8             |                                  |
|                        | Pugo River                         |                                     | В                       |                                | 7.2             |                                  |
|                        | Budacao River                      |                                     |                         |                                | 6.4             |                                  |
|                        | Depanay River                      |                                     |                         |                                | 5.3             |                                  |
|                        | Cagaling River                     |                                     |                         |                                | 2.3             |                                  |
|                        | City Camp River                    |                                     |                         |                                | 4.1             |                                  |
|                        |                                    |                                     |                         |                                |                 |                                  |
| Naguilian River        |                                    |                                     |                         |                                |                 |                                  |
|                        | Balili River                       | La Trinidad, Baguio City,<br>Sablan | Α                       | 19,455.4                       | 30.6            | 0.9                              |
|                        | Payung River                       |                                     |                         |                                | 9.6             |                                  |
|                        | Coplas River                       |                                     |                         |                                |                 |                                  |
|                        | Oring River                        |                                     |                         |                                | 4.1             |                                  |
|                        | Anneng River                       |                                     |                         |                                | 13.3            |                                  |
|                        | Bolo Creek                         |                                     |                         |                                | 1.8             |                                  |
|                        | Gayasi River                       |                                     |                         |                                | 5.5             |                                  |
|                        | Gibraltar Creek                    |                                     |                         |                                |                 |                                  |
|                        | Sagudin Creek                      |                                     |                         |                                |                 |                                  |
|                        |                                    |                                     |                         |                                |                 |                                  |
| Bued River             |                                    | Baguio City, Tuba, Itogon           | С                       | 18,473.8                       | 31.5            | 62.6                             |
|                        | Taloy Creek                        |                                     |                         |                                | 2.1             |                                  |
|                        | Twin Peaks Creek                   |                                     |                         |                                | 2.8             |                                  |
|                        | Bayating Creek                     |                                     |                         |                                |                 |                                  |
|                        | Colorado Falls /<br>Palimall Creek |                                     |                         |                                | 4.9             |                                  |
|                        | Arobigos Creek                     |                                     |                         |                                |                 |                                  |
|                        | Talebe Crrek                       |                                     |                         |                                |                 |                                  |
|                        | Pasingi Creek                      |                                     |                         |                                |                 |                                  |
|                        | Covelas Creek                      |                                     |                         |                                |                 |                                  |
|                        | Tokang Creek                       |                                     |                         |                                | 3.1             |                                  |
|                        | Ampasit Creek                      |                                     |                         |                                | 6.7             |                                  |
|                        |                                    |                                     |                         |                                |                 |                                  |

**Table 1.13 Characteristics of Rivers and Streams** as of 2019 (continued)

| Name of Major<br>River | Name of<br>Tributaries  | Location                     | Water<br>Classification | Est.<br>Drainage<br>Area (ha.) | Length<br>(km.) | Discharge<br>Rate<br>(cu.m./sec) |
|------------------------|-------------------------|------------------------------|-------------------------|--------------------------------|-----------------|----------------------------------|
|                        | Sangilo Creek           |                              |                         |                                | 3.2             |                                  |
|                        | Balding Creek           |                              |                         |                                | 7.1             |                                  |
|                        | Ataki Creek             |                              |                         |                                | 6.2             |                                  |
|                        | Camp 4 Creek            |                              |                         |                                | 2.0             |                                  |
|                        | Pugo/Kias Creek         |                              |                         |                                | 9.9             |                                  |
|                        | Camp 5 / Honey<br>Creek |                              |                         |                                | 3.1             |                                  |
|                        | Gold Coin Creek         |                              |                         |                                |                 |                                  |
|                        | Liwliw Creek            |                              |                         |                                |                 |                                  |
|                        | Copper King Creek       |                              |                         |                                | 2.5             |                                  |
|                        | Amliang Creek           |                              |                         |                                |                 |                                  |
|                        | Uabac Creek             |                              |                         |                                |                 |                                  |
|                        | Chaparral Creek         |                              |                         |                                | 6.2             |                                  |
|                        | Balsigan Creek          |                              |                         |                                | 2.1             |                                  |
|                        | Loakan Creek            |                              |                         |                                | 2.0             |                                  |
|                        |                         |                              |                         |                                |                 |                                  |
| Silag River            | Silag River             |                              |                         | 12,244.0                       | 30.3            |                                  |
|                        |                         |                              |                         |                                |                 |                                  |
| Cabicungan<br>River    | Cabicungan River        | Calanasan                    | В                       | 5,888.1                        | 11.9            |                                  |
|                        |                         |                              |                         |                                |                 |                                  |
| Others                 | Bakun River             |                              |                         |                                |                 |                                  |
|                        | Badeo River             |                              |                         |                                |                 |                                  |
|                        | Budacao River           | Tuba                         | Α                       |                                |                 |                                  |
| Source: Departmen      | Depanay River           | Natural Resources - Cordille | A                       | n                              |                 |                                  |

Source: Department of Environment and Natural Resources - Cordillera Administrative Region

**Table 1.14 Characterization of Soil by Type and by Province** 2015 (area in hectares)

| Soil Type          | Abra    | Apayao  | Benguet | Ifugao  | Kalinga | Mt.<br>Province | CAR       |
|--------------------|---------|---------|---------|---------|---------|-----------------|-----------|
| Clay               | 68,434  | 24      | 14,714  | 39,127  | 20,407  | 32,350          | 175,056   |
| Clay loam          | 18,014  | 159,160 | 36,431  | 26,248  | 64,583  | 23,307          | 327,743   |
| Gravelly clay loam | -       | -       | 3,672   | 8,753   | -       | -               | 12,425    |
| Gravelly loam      | -       | -       | 5,837   | -       | -       | -               | 5,837     |
| Loam               | 1,010   | -       | 36,976  | 294     | 2,261   | 29,096          | 69,637    |
| Mountain soil      | 253,145 | 249,132 | 196,388 | 154,641 | 118,012 | 121,998         | 1,093,316 |
| River wash         | 6,007   | 427     | 41      | 166     | 2,705   | -               | 9,346     |
| Rocky              | -       | -       | -       | 357     | 517     | -               | 874       |
| Sandy clay         | -       | -       | 485     | -       | 1,845   | 1,141           | 3,472     |
| Sandy clay loam    | 35,675  | 657     | -       | 3,161   | 5,001   | -               | 44,494    |
| Sandy loam         | 1,406   | 2,722   | 585     | 215     | 49,201  | 576             | 54,704    |
| Silt loam          | -       | 5,335   | 9,988   | 320     | 360     | 1,611           | 17,615    |
| Silty clay         | -       | 3,745   | -       | -       | -       | -               | 3,745     |
| Silty clay loam    | 2,001   | 2,412   | -       | 24,998  | -       | 17,984          | 47,395    |
| Total              | 385,692 | 423,613 | 305,117 | 258,282 | 264,892 | 228,064         | 1,865,660 |

Source of basic data: Department of Environment and Natural Resources - Cordillera Administrative Region

**Table 1.15 Rock Types by Province** 2015 (area in hectares)

| Rock Types                                                | Abra    | Apayao  | Benguet | Ifugao  | Kalinga | Mt. Province | CAR       |
|-----------------------------------------------------------|---------|---------|---------|---------|---------|--------------|-----------|
| Neogene                                                   | 80,630  | 58,836  | 68,006  | 12,569  | 26,029  | 28,605       | 274,674   |
| Oligocene-Miocene                                         | 25,831  | 39,015  | 2,030   | 7,721   | 1,619   | 4,359        | 80,576    |
| Oligocene-Miocene<br>(Sedimentary & Metamorphic<br>Rocks) | 40,866  | 54,624  | 134,990 | 178,455 | 66,110  | 92,188       | 567,234   |
| Paleocene-Eocene<br>(Sedimentary & Metamorphic<br>Rocks)  | 27,894  | -       | -       | -       | -       | -            | 27,894    |
| Pliocene-Pleistocene                                      | 478     | 15,137  | -       | 10,263  | 55,269  | 10,889       | 92,036    |
| Pliocene-Quaternary                                       | -       | 4,258   | 3,930   | 962     | 2,805   | 3,060        | 15,016    |
| Recent                                                    | 30,441  | 19,834  | 294     | 1,273   | 32,292  | 1,344        | 85,478    |
| Undifferentiated                                          | 154,018 | 177,400 | 69,208  | 22,012  | 39,426  | 64,401       | 526,465   |
| Undifferentiated (Sedimentary & Metamorphic Rocks)        | -       | -       | -       | 115     | -       | 6,896        | 7,011     |
| Upper Miocene-Pliocene                                    | -       | 2,346   | 3,571   | -       | -       | -            | 5,917     |
| Upper Miocene-Pliocene<br>(Sedimentary & Rocks)           | 25,534  | 52,163  | 23,087  | 24,911  | 41,342  | 16,322       | 183,359   |
| Total                                                     | 385,692 | 423,613 | 305,117 | 258,282 | 264,892 | 228,064      | 1,865,660 |
| Silty clay                                                | -       | 3,745   | -       | -       | -       | -            | 3,745     |
| Silty clay loam                                           | 2,001   | 2,412   | -       | 24,998  | -       | 17,984       | 47,395    |
| Total                                                     | 385,692 | 423,613 | 305,117 | 258,282 | 264,892 | 228,064      | 1,865,660 |

Source of basic data: Department of Environment and Natural Resources - Cordillera Administrative Region

Table 1.16.1 Annual Average Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) Concentration of **Selected Fresh Water Bodies in CAR** 

2011 to 2018 (continued)

|                    |                    |                     |       |               | 20            |                     | 2012   |                      |       |
|--------------------|--------------------|---------------------|-------|---------------|---------------|---------------------|--------|----------------------|-------|
| Water Body         | DO WQ<br>Guideline | BOD WQ<br>Guideline | Class | Aver<br>(in m | rage<br>ng/L) | Conforma<br>the sta |        | Average<br>(in mg/L) |       |
|                    | (mg/l)             | (mg/l)              |       | DO            | BOD           | DO                  | BOD    | DO                   | BOD   |
| Bued River         | 5                  | 7                   | C     | 7.07          | 6.33          | Passed              | Passed | 10.33                | 5     |
| Ambulalacao Lake   | 5                  | 1                   | AA    | -             | -             |                     |        | -                    | -     |
| Pugo River         | 5                  | 5                   | В     | 9.09          | 5             | Passed              | Failed | 10.64                | 1     |
| Abra River         | 5                  | 3                   | А     | -             | -             |                     |        | -                    | -     |
| Agno River         | 5                  | 3                   | А     | 6.75          | 3             | Passed              | Failed | 10.18                | 1.5   |
| Chico River        | 5                  | 5                   | А     | 5.56          | 1             | Passed              | Passed | -                    | -     |
| Amburayan River    | 5                  | 5                   | В     | 6.88          | 6.33          | Passed              | Failed | 9.36                 | 1.625 |
| Budacao River      | 5                  | 3                   | В     | 5.13          | 1             | Passed              | Passed | 10.99                | 1     |
| Alenod River       | 5                  | 3                   | Α     | 6.28          | 1             | Passed              | Passed | 12.33                | 1     |
| Ambalanga River    | 5                  | 7                   | C     | 5.09          | 4             | Passed              | Passed | 10.08                | 1     |
| Eddet River        | 5                  | 3                   | А     | 7.28          | 1             | Passed              | Passed | 13.87                | 1     |
| Depanay River      | 5                  | 3                   | В     | 6.59          | 1             | Passed              | Passed | 11                   | 3     |
| Asin Gallano River | 5                  | 5                   | В     | 6.23          | 2.6           | Passed              | Passed | 10.87                | 4.625 |
| Balili River       | 5                  | 3                   | А     | 3.22          | 59.7          | Failed              | Failed | 6.45                 | -     |

Source of basic data: Department of Environment and Natural Resources - Cordillera Administrative Region

Table 1.16.1 Annual Average Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) Concentration of **Selected Fresh Water Bodies in CAR** 2011 to 2018

|                    |                      | 20    | 15     |                               |       | 20            | 16                  |        | 2017                    |
|--------------------|----------------------|-------|--------|-------------------------------|-------|---------------|---------------------|--------|-------------------------|
| Water Body         | Average<br>(in mg/L) |       |        | Conformance with the standard |       | rage<br>ng/L) | Conforma<br>the sta |        | Average<br>(in<br>mg/L) |
|                    | DO                   | BOD   | DO     | BOD                           | DO    | BOD           | DO                  | BOD    | DO                      |
| Bued River         | 8.30                 | 14.23 | Passed | Failed                        | 9.28  | 7.28          | Passed              | Failed | 9.79                    |
| Ambulalacao Lake   | 9.61                 | 1.5   | Passed | Passed                        | 13.84 | 1.33          | Passed              | Passed | 10.39                   |
| Pugo River         | 10.91                | 1     | Passed | Passed                        | 10.62 | <1            | Passed              | Passed | 10.59                   |
| Abra River         | 9.38                 | 3.16  | Passed | Failed                        | 9.90  | 4.33          | Passed              | Failed | 10.58                   |
| Agno River         | 8.80                 | 1.94  | Passed | Passed                        | 11.64 | 1.27          | Passed              | Passed | 12.64                   |
| Chico River        | 9.24                 | -     | Passed |                               | 10.03 | -             | Passed              |        | 10.34                   |
| Amburayan River    | 10.02                | 1     | Passed | Passed                        | 12.25 | 1.25          | Passed              | Passed | 11.99                   |
| Budacao River      | 10.26                | 1     | Passed | Passed                        | 10.23 | 1             | Passed              | Passed | 10.46                   |
| Alenod River       | 12.96                | 1     | Passed | Passed                        | 12.85 | 1             | Passed              | Passed | 14.48                   |
| Ambalanga River    | 9.74                 | 2     | Passed | Passed                        | 10.82 | 1             | Passed              | Passed | 11.04                   |
| Eddet River        | 14.31                | 2.33  | Passed | Passed                        | 11.87 | 2             | Passed              | Passed | 12.91                   |
| Depanay River      | 10.59                | 1     | Passed | Passed                        | 11.28 | 1             | Passed              | Passed | 10.73                   |
| Asin Gallano River | 7.59                 | 1.59  | Passed | Passed                        | 9.80  | 1.1           | Passed              | Passed | 10.50                   |
| Balili River       | 6.32                 | 34.19 | Passed | Failed                        | 6.10  | 55.56         | Passed              | Failed | 4.95                    |

Source of basic data: Department of Environment and Natural Resources - Cordillera Administrative Region

|                     |        |               | 20           | 13     |                                              |       | 20    | 14                  |        |
|---------------------|--------|---------------|--------------|--------|----------------------------------------------|-------|-------|---------------------|--------|
| Conforma<br>the sta |        | Aver<br>(in m | age<br>ng/L) |        | onformance with Avera<br>the standard (in mg |       | _     | Conforma<br>the sta |        |
| DO                  | BOD    | DO            | BOD          | DO     | BOD                                          | DO    | BOD   | DO                  | BOD    |
| Passed              | Passed | 9.09          | 1            | Passed | Passed                                       | 8.18  | 9.13  | Passed              | Failed |
|                     |        | 8.19          | 2            | Passed | Passed                                       | 18.5  | 1.5   | Passed              | Passed |
| Passed              | Passed | 13.96         | <1           | Passed | Passed                                       | 9.39  | 1     | Passed              | Passed |
|                     |        | -             | -            |        |                                              | -     | -     |                     |        |
| Passed              | Passed | 11.06         | 2            | Passed | Passed                                       | 10.42 | 1.17  | Passed              | Passed |
|                     |        | 9.09          | -            | Passed |                                              | 9.38  | -     | Passed              |        |
| Passed              | Passed | 11.01         | 1.5          | Passed | Passed                                       | 10.06 | <1    | Passed              | Passed |
| Passed              | Passed | 10.44         | <1           | Passed | Passed                                       | 10.59 | 1     | Passed              | Passed |
| Passed              | Passed | 10.94         | 1            | Passed | Passed                                       | 14.16 | 2     | Passed              | Passed |
| Passed              | Passed | 13.17         | 3            | Passed | Passed                                       | 8.54  | 1.5   | Passed              | Passed |
| Passed              | Passed | 18.69         | 1            | Passed | Passed                                       | 7.89  | 1     | Passed              | Passed |
| Passed              | Failed | 11.36         | 1            | Passed | Passed                                       | 10.61 | 1     | Passed              | Passed |
| Passed              | Passed | 8.09          | 2            | Passed | Passed                                       | 9.48  | 1     | Passed              | Passed |
| Passed              |        | 6.77          | 43.4286      | Passed | Failed                                       | 5.89  | 41.95 | Passed              | Failed |

|       | 2017                |        |                      | 20    | 18                            |        |  |
|-------|---------------------|--------|----------------------|-------|-------------------------------|--------|--|
|       | Conforma<br>the sta |        | Average<br>(in mg/L) |       | Conformance with the standard |        |  |
| BOD   | DO                  | BOD    | DO                   | BOD   | DO                            | BOD    |  |
| 10.24 | Passed              | Failed | 10.09                | 10.78 | Passed                        | Failed |  |
| 1.75  | Passed              | Passed | 11.36                | 1     | Passed                        | Passed |  |
| 1     | Passed              | Passed | 13.55                | 1     | Passed                        | Passed |  |
| 1.27  | Passed              | Passed | 13.09                | 1.1   | Passed                        | Passed |  |
| 1.11  | Passed              | Passed | 13.93                | 1.63  | Passed                        | Passed |  |
| 1.03  | Passed              | Passed | 7.71                 | 1.28  | Passed                        | Passed |  |
| 1.08  | Passed              | Passed | 12.88                | 1     | Passed                        | Passed |  |
| 1     | Passed              | Passed | 13.58                | 1     | Passed                        | Passed |  |
| 1     | Passed              | Passed | 17.30                | 1     | Passed                        | Passed |  |
| 2     | Passed              | Passed | 12.77                | 1.5   | Passed                        | Passed |  |
| 1     | Passed              | Passed | 14.83                | 1     | Passed                        | Passed |  |
| 1     | Passed              | Passed | 14.95                | 1     | Passed                        | Passed |  |
| 1.19  | Passed              | Passed | 13.19                | 1.05  | Passed                        | Passed |  |
| 63.45 | Failed              | Failed | 5.78                 | 53.87 | Passed                        | Failed |  |

**Table 1.16.2** Acidity/Alkalinity/pH of Selected Fresh Water Bodies in CAR **2011 to 2018** (continued)

| Weter Berl         | WO C LIJE    | 2011                | 2012                | 2013                | 20                  | 14                  |
|--------------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Water Body         | WQ Guideline | 2 <sup>nd</sup> Qtr | 4 <sup>th</sup> Qtr | 4 <sup>th</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |
| Bued River         | 6.5-9.0      | 8.57                | -                   | 9.39                | 7.73                | 7.72                |
| Ambulalacao Lake   | 6.5-8.5      | -                   | -                   | 10.08               | -                   | 8.31                |
| Pugo River         | 6.5-8.5      | 7.21                | 9.01                | 9.41                | -                   | 7.96                |
| Abra River         | 6.5-8.5      | -                   | -                   | -                   | -                   | -                   |
| Agno River         | 6.5-8.5      | 8.01                | 9.07                | 8.92                | -                   | 7.64                |
| Chico River        | 6.5-8.5      | 8.39                | -                   | 8.99                | -                   | 7.69                |
| Amburayan River    | 6.5-8.5      | 8.32                | 9.173               | 9.46                | -                   | 8.32                |
| Budacao River      | 6.5-8.5      | 7.85                | 8.99                | 9.25                | -                   | 8.15                |
| Alenod River       | 6.5-8.5      | 8.48                | 8.33                | 8.92                | -                   | 7.65                |
| Ambalanga River    | 6.5-9.0      | 8.39                | 8.19                | 9.46                | -                   | 7.72                |
| Eddet River        | 6.5-8.5      | 8.31                | 8.96                | 8.51                | -                   | 7.56                |
| Depanay River      | 6.5-8.5      | 8.09                | 9.1                 | 9.33                | -                   | 8.14                |
| Asin Gallano River | 6.5-8.5      | 8.57                | 8.81                | 9.34                | 8.46                | 8.02                |
| Balili River       | 6.5-8.5      | 7.88                | 8.55                | 7.80                | 8.09                | 7.48                |

Source of basic data: Environmental Management Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

**Table 1.16.2** Acidity/Alkalinity/pH of Selected Fresh Water Bodies in CAR 2011 to 2018

| Matau Dado         |                     | 20                  | 2018                |                     |                     |                     |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Water Body         | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr |
| Bued River         | 7.78                | 7.42                | 9.04                | 8.86                | 7.46                | 9.19                |
| Ambulalacao Lake   | 8.24                | 7.42                | 7.93                | 6.9                 | 6.43                | 6.53                |
| Pugo River         | 6.86                | 7.47                | 7.88                | 7.59                | 7.87                | 8.6                 |
| Abra River         | 7.73                | 8.51                | 7.23                | 7.23                | 8.98                | 8.98                |
| Agno River         | 7.82                | 7.52                | 7.49                | 7.46                | 7.15                | 6.57                |
| Chico River        | 7.84                | 7.92                | 7.69                | 7.87                | 9.31                | 7.40                |
| Amburayan River    | 7.55                | 7.86                | 7.38                | 7.95                | 7.87                | 7.57                |
| Budacao River      | 6.79                | 7.16                | 7.86                | 7.15                | 7.86                | 8.6                 |
| Alenod River       | 7.84                | 7.68                | 7.54                | 7.59                | 7.04                | 6.95                |
| Ambalanga River    | 7.44                | 7.33                | 7.62                | 7.39                | 7.93                | 6.52                |
| Eddet River        | 7.84                | 7.81                | 7.51                | 7.46                | 7.51                | 6.78                |
| Depanay River      | 7.23                | 7.39                | 7.96                | 7.31                | 7.72                | 8.78                |
| Asin Gallano River | 7.64                | 8.01                | 7.72                | 8.05                | 8.69                | 9.60                |
| Balili River       | 7.49                | 7.41                | 7.60                | 7.49                | 7.01                | 7.86                |

|         | 20                  | 15                  |                     | 2016                |                     |                     |
|---------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 1st Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 4 <sup>th</sup> Qtr |
| 8.06    | 7.61                | 8.17                | 7.48                | 7.88                | 8.17                | 8.217               |
| -       | 8.06                | 6.78                | 7.61                | 8.25                | 6.41                | 15.78               |
| 5.67    | -                   | 8.29                | 7.64                | 7.97                | 7.08                | 7.51                |
| 7.22    | 7.59                | 7.97                | 7.30                | 7.06                | 7.81                | 7.11                |
| -       | 7.73                | 7.57                | 7.35                | 5.48                | 7.29                | 7.18                |
| -       | 8.42                | 7.90                | 8.13                | 7.98                | 7.66                | 8.01                |
| 7.90    | -                   | 8.23                | 7.44                | 8.24                | 8.65                | 7.65                |
| 6.42    | -                   | 8.39                | 7.9                 | 7.72                | 6.9                 | 7.8                 |
| -       | 7.83                | 6.57                | 7.54                | 9                   | 7.37                | 6.68                |
| -       | 8.06                | 6.73                | 7.11                | 11                  | 6.41                | 7.68                |
| -       | 8.15                | 8.13                | 7.19                | 8                   | 7.49                | 6.99                |
| 5.92    | -                   | 8.41                | 7.8                 | 7.49                | 6.9                 | 7.49                |
| 7.73    | 6.88                | 76.33               | 7.82                | 7.06                | 7.42                | 7.72                |
| 7.56    | 7.56                | 7.59                | 7.69                | 8.18                | 7.45                | 7.73                |

| 2018                |                     |  |  |  |  |  |
|---------------------|---------------------|--|--|--|--|--|
| 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |  |  |  |  |  |
| 7.09                | 7.66                |  |  |  |  |  |
| 6.22                | 7.79                |  |  |  |  |  |
| 8.05                | 9.31                |  |  |  |  |  |
| 7.32                | 7.78                |  |  |  |  |  |
| 7.35                | 7.61                |  |  |  |  |  |
| 7.06                | 9.96                |  |  |  |  |  |
| 7.57                | 7.57                |  |  |  |  |  |
| 7.79                | 10.31               |  |  |  |  |  |
| 7.45                | 7.45                |  |  |  |  |  |
| 7.25                | 7.67                |  |  |  |  |  |
| 7.57                | 8.01                |  |  |  |  |  |
| 7.95                | 10.85               |  |  |  |  |  |
| 8.13                | 8.22                |  |  |  |  |  |
| 8.99                | 6.98                |  |  |  |  |  |

**Table 1.16.3 Total Suspendid Solid of Selected Fresh Water Bodies in CAR 2011 to 2018** (continued)

| Water Dady         | WQ Guideline | 2011                | 20                  | 12                  | 2013                | 20                  | 14                  |
|--------------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Water Body         | (mg/l)       | 2 <sup>nd</sup> Qtr | 2 <sup>nd</sup> Qtr | 4 <sup>th</sup> Qtr | 4 <sup>th</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |
| Bued River         | 80           | 312.7               | -                   | -                   | 258.3               | 221.2               | 571.3               |
| Ambulalacao Lake   | 25           | -                   | -                   | -                   | 1                   | 2                   | 2                   |
| Pugo River         | 65           | 1                   | 4                   | <1                  | <1                  | <1                  | <1                  |
| Abra River         | 50           | 19.4                | 13.8                | 18.3                | 8.8                 | 1.8                 | 8                   |
| Agno River         | 50           | 22                  | -                   | 2.3                 | 104.3               | 46.4                | 58.8                |
| Chico River        | 65           | 161                 | 35.3                | 18.6                | 4.7                 | 25.3                | 13.1                |
| Amburayan River    | 65           | 16                  | 1                   | <1                  | 2.7                 | 20.7                | 16                  |
| Budacao River      | 50           | <1                  | <1                  | <1                  | <1                  | 2                   | 3                   |
| Alenod River       | 50           | 8                   | -                   | 4                   | 9                   | 31                  | 10                  |
| Ambalanga River    | 80           | 245                 | -                   | 87                  | 7                   | 232                 | 385                 |
| Eddet River        | 50           | <1                  | -                   | 2                   | 10                  | 1                   | <0.006              |
| Depanay River      | 50           | <1                  | 1                   | <1                  | 5                   | 2                   | <1                  |
| Asin Gallano River | 65           | 42.3                | 3                   | 2.3                 | 7                   | -                   | 2.8                 |
| Balili River       | 50           | 29                  | 8.2                 | 22.7                | 25.1                | 32.96               | 34.2                |

Source of data: Environmental Management Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

**Table 1.16.3 Total Suspendid Solid of Selected Fresh Water Bodies in CAR** 2011 to 2018

| Matau Dada         |         | 20                  | 2018                |                     |                     |                     |
|--------------------|---------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Water Body         | 1st Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr |
| Bued River         | 115.9   | 115.9               | 155.2               | 283.7               | 219.2               | 130.3               |
| Ambulalacao Lake   | <1      | 1                   | 5                   | 2                   | <1                  | 1                   |
| Pugo River         | <1      | 2                   | 24                  | 1                   | <1                  | <1                  |
| Abra River         | 7.8     | 4.7                 | 123.5               | 123.5               | 4                   | 70.6                |
| Agno River         | 7.5     | 69.5                | 14.3                | 20.5                | 14.3                | 521.3               |
| Chico River        | 29.8    | 60.6                | 17.5                | 19.6                | 11.7                | 10.2                |
| Amburayan River    | 2.0     | 1.9                 | 8.3                 | 2.3                 | 5.2                 | 27.8                |
| Budacao River      | <1      | 2                   | 21                  | <1                  | <1                  | <1                  |
| Alenod River       | 7       | 2                   | 5                   | 3                   | 6                   | 57                  |
| Ambalanga River    | 192     | 71                  | 214                 | 125.5               | 548                 | 784                 |
| Eddet River        | <1      | <1                  | 191                 | 3                   | 3                   | 16                  |
| Depanay River      | <1      | 3                   | 55                  | 2                   | 2                   | 1                   |
| Asin Gallano River | 3.0     | 26.2                | 44                  | 4.4                 | 5                   | 11.6                |
| Balili River       | 65.8    | 62.8                | 39.5                | 19.2                | 67.1                | 63.1                |

|         | 20                  | 15                  |                     | 2016                |                     |                     |
|---------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 1st Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 4 <sup>th</sup> Qtr |
| 958.0   | 364.0               | 181.2               | 63.1                | 207.8               | 1277.7              | 53.8                |
| 2       | 5                   | 1                   | 3                   | 3                   | 7                   | 4                   |
| 2       | 1                   | 3                   | 2                   | <1                  | 2                   | 4                   |
| 5.2     | 5.3                 | 96.2                | 3.2                 | 4.3                 | 3                   | 41.2                |
| 138.3   | 202.4               | 19.5                | 21                  | 8.33                | 130                 | 33.6                |
| 9.6     | 8.2                 | 20.6                | 5.4                 | 7.4                 | 8.8                 | 5.0                 |
| 4.5     | 1                   | 47                  | 14.3                | <1                  | 8.3                 | 1.7                 |
| 2       | <1                  | 3                   | 12                  | <1                  | <1                  | <1                  |
| 1       | 10                  | 8                   | <1                  | <1                  | <1                  | 7                   |
| 2994    | 877                 | 357                 | 199                 | 197                 | 242                 | 7                   |
| 4       | 2                   | 7                   | <1                  | <1                  | 4                   | <1                  |
| <1      | <1                  | <1                  | 2                   | <1                  | 2                   | <1                  |
| 6.3     | 58.8                | 14.4                | 10.8                | 3                   | 7.3                 | 1.5                 |
| 62.9    | 111.2               | 21.0                | 12.6                | 127.5               | 43.7                | 22.3                |

| 2018                |                     |  |  |  |  |  |  |
|---------------------|---------------------|--|--|--|--|--|--|
| 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |  |  |  |  |  |  |
| 2374.1              | 135.1               |  |  |  |  |  |  |
| 9                   | 6                   |  |  |  |  |  |  |
| 8                   | <1                  |  |  |  |  |  |  |
| 232.3               | 9.4                 |  |  |  |  |  |  |
| 60.8                | 134.8               |  |  |  |  |  |  |
| 15.8                | 9                   |  |  |  |  |  |  |
| 22.1                | 4.3                 |  |  |  |  |  |  |
| 8                   | 3                   |  |  |  |  |  |  |
| 17                  | 17                  |  |  |  |  |  |  |
| 190                 | 246                 |  |  |  |  |  |  |
| 16                  | 22                  |  |  |  |  |  |  |
| 7                   | <1                  |  |  |  |  |  |  |
| 12.4                | 3.8                 |  |  |  |  |  |  |
| 45.8                | 18.5                |  |  |  |  |  |  |

**Table 1.16.4 Fecal Coliform of Selected Fresh Water Bodies in CAR** 2011 to 2018 (in MPN/100 mL)

(continued)

| Water Dade         | WQ Guideline | 2011                | 2012                | 20                  | 14                  |
|--------------------|--------------|---------------------|---------------------|---------------------|---------------------|
| Water Body         | (MPN/100ml)  | 2 <sup>nd</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |
| Bued River         | 200          | -                   | -                   | 218,005,607         | 332,000,000         |
| Ambulalacao Lake   | <1.1         | -                   | -                   | 7,000               | 8                   |
| Pugo River         | 100          | 5                   | 23                  | -                   | -                   |
| Abra River         | <1.1         | -                   | -                   | -                   | -                   |
| Agno River         | <1.1         | 1,600               | -                   | 49,000              | 80,250              |
| Chico River        | 100          | 7,667               | -                   | -                   | -                   |
| Amburayan River    | 100          | -                   | -                   | -                   | -                   |
| Budacao River      | <1.1         | 2                   | 49                  | 2,400               | 310                 |
| Alenod River       | <1.1         | -                   | -                   | 1,300               | 490                 |
| Ambalanga River    | 200          | -                   | -                   | 92,000              | 1,600,000           |
| Eddet River        | <1.1         | -                   | -                   | 790                 | <0.017              |
| Depanay River      | <1.1         | 5                   | 17                  | 1,700               | 94                  |
| Asin Gallano River | 100          | 16,533              | 73,133              | -                   | 6,780               |
| Balili River       | <1.1         | 240,000             | 20,141,857          | 6,210,645,217       | 106,000,000,000     |

Source of data: Environmental Management Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

**Table 1.16.4 Fecal Coliform of Selected Fresh Water Bodies in CAR** 2011 to 2018 (in MPN/100 mL)

| Matau Dada         |                     | 2016                |                     | 20                  | 17                  |
|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Water Body         | 2 <sup>nd</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr |
| Bued River         | 648,000             | 69,100,000          | 664,751,875         | 113,000,000         | 1,250,000,000       |
| Ambulalacao Lake   | 23                  | 140                 | 79                  | <1.08               | 25                  |
| Pugo River         | 260                 | 700                 | 1,100               | 7,900               | 270                 |
| Abra River         | -                   | -                   | -                   | -                   | -                   |
| Agno River         | 1,512               | 47,140              | 3,966               | 1,080               | 31,900              |
| Chico River        | -                   | -                   | -                   | -                   | -                   |
| Amburayan River    | -                   | -                   | -                   | -                   | -                   |
| Budacao River      | 23                  | 220                 | 4,900               | 170                 | 13,000              |
| Alenod River       | 3,300               | 330                 | 33,000              | 13,000              | 200                 |
| Ambalanga River    | 17,000              | 490,000             | 4,900               | 1,600,000           | 23,000              |
| Eddet River        | 1,700               | 94,000              | 70,000              | 2,200               | 680                 |
| Depanay River      | 700                 | 7,900               | 200                 | 230                 | 2,300               |
| Asin Gallano River | 10,860              | 28,920              | 298,000             | 10,740              | 268,000             |
| Balili River       | 1,630,000,000       | 8,490,280,476       | 21,500,304,762      | 11,715,333,333      | 5,280,190,476       |

| 2015                |                     |                     |                     |  |  |  |  |  |
|---------------------|---------------------|---------------------|---------------------|--|--|--|--|--|
| 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |  |  |  |  |  |
| 503,000,000         | 523,000,000         | 119,200,000         | -                   |  |  |  |  |  |
| 23                  | 23                  | 35,000              | -                   |  |  |  |  |  |
| 94                  | 130                 | 790                 | -                   |  |  |  |  |  |
| -                   | -                   | -                   | -                   |  |  |  |  |  |
| 1,828               | 2,400               | 6,175               | -                   |  |  |  |  |  |
| -                   | -                   | -                   | -                   |  |  |  |  |  |
| -                   | 2,800               | 35,533              | 405                 |  |  |  |  |  |
| 17                  | 540                 | 23                  | -                   |  |  |  |  |  |
| 110                 | 920                 | 5,400               | -                   |  |  |  |  |  |
| 920,000             | 33,000              | 49,000              | -                   |  |  |  |  |  |
| 170,000             | 49                  | 2,400               | -                   |  |  |  |  |  |
| 54                  | 240                 | 1,100               | -                   |  |  |  |  |  |
| 3,784,800           | 80,733              | 16,780              | -                   |  |  |  |  |  |
| 1,010,000,000       | 74,581,900          | 1,439,000,000       | -                   |  |  |  |  |  |

|                     |                     |                     | 2                   | 018                 |                     |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |
| 22,821,333          | 3,506,592           | 135,599,986         | 16,419,340          | 35,892,404          | 686,522,392         |
| -                   | 1,300               | 380                 | 400                 | 140                 | 130                 |
| 7,900               | 150                 | 9,200               | 220                 | 2,100               | 78                  |
| -                   | -                   | -                   | -                   | -                   | -                   |
| -                   | 8,200               | 8,075               | 843,133             | 285,500             | 2,720               |
| -                   | -                   | -                   | -                   | -                   | -                   |
| -                   | -                   | 2,575               | 15,010              | 21,264              | 852                 |
| 170                 | 2,400               | 3,500               | 400                 | 330                 | 4,000               |
| -                   | 2,400               | 3,500               | 63,000              | 22,000              | 22,000              |
| -                   | 49,000              | 920,000             | 170,000             | 380,000             | 49,000              |
| -                   | 49,000              | 9,200               | 380                 | 3,500               | 790                 |
| 230                 | 4,600               | 16,000              | 1,400               | 3,900               | 1,300               |
| 78,240              | 3,331               | -                   | 9,220               | 40,520              | 5,440               |
| 113,593,476,190     | 118,122,636,190     | 212,025,155,000     | 290,527,740,000     | 36,263,384,700,000  | 40,268,416,047,619  |

**Table 1.16.5 Temperature of Selected Fresh Water Bodies in CAR 2011 to 2018** (continued)

| Water Dady         | WQ        | 2011                | 2012                | 2013                | 20                  | 14                  |
|--------------------|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Water Body         | Guideline | 2 <sup>nd</sup> Qtr | 4 <sup>th</sup> Qtr | 4 <sup>th</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |
|                    | (°C)      | (°C)                | (°C)                | (°C)                | (°C)                | (°C)                |
| Bued River         | 25-31     | 28.0                | 25.0                | 24.4                | 22.3                | 21.9                |
| Ambulalacao Lake   | 26-30     | -                   | -                   | 18.0                | -                   | 17.2                |
| Pugo River         | 26-30     | 26.1                | 24.5                | 23.5                | -                   | 22.5                |
| Abra River         | 26-30     | -                   | -                   | -                   | -                   | -                   |
| Agno River         | 26-30     | 22.6                | 19.0                | 21.9                | -                   | 20.2                |
| Chico River        | 26-30     | 22.6                | -                   | 20.8                | -                   | 19.8                |
| Amburayan River    | 26-30     | 27.8                | 23.1                | 23.2                | -                   | 25.6                |
| Budacao River      | 26-30     | 28.7                | 23.4                | 23.9                | -                   | 21.4                |
| Alenod River       | 26-30     | 22.0                | 17.8                | 19.8                | -                   | 17.9                |
| Ambalanga River    | 25-31     | 28.5                | 25.7                | 24.0                | -                   | 25.0                |
| Eddet River        | 26-30     | 23.2                | 19.8                | 21.2                | -                   | 20.5                |
| Depanay River      | 26-30     | 25.6                | 24.0                | 24.1                | -                   | 21.0                |
| Asin Gallano River | 26-30     | 28.6                | 25.7                | 24.8                | 24.0                | 23.6                |
| Balili River       | 26-30     | 22.1                | 21.3                | 21.4                | 20.6                | 20.6                |

Source of data: Environmental Management Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

**Table 1.16.5 Temperature of Selected Fresh Water Bodies in CAR** 2011 to 2018

|                    |         | 20                  | 17                  |                     | 2018    |
|--------------------|---------|---------------------|---------------------|---------------------|---------|
|                    | 1st Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | 1st Qtr |
|                    | (°C)    | (°C)                | (°C)                | (°C)                | (°C)    |
| Bued River         | 22.4    | 25.2                | 23.0                | 22.2                | 23.1    |
| Ambulalacao Lake   | 23.0    | 19.4                | 16.9                | 16.2                | 16.7    |
| Pugo River         | 22.6    | 25.1                | 23.1                | 23.9                | 23.6    |
| Abra River         | 28.9    | 31.8                | 27.6                | 27.6                | 30.6    |
| Agno River         | 20.9    | 23.7                | 21.8                | 21.7                | 21.1    |
| Chico River        | 17.5    | 26.5                | 22.1                | 21.4                | 23.2    |
| Amburayan River    | 22.5    | 24.7                | 23.1                | 23.8                | 21.6    |
| Budacao River      | 22.0    | 23.5                | 22.4                | 23.1                | 22.7    |
| Alenod River       | 18.9    | 21.2                | 19.6                | 19.3                | 20.0    |
| Ambalanga River    | 23.0    | 26.3                | 23.6                | 26.5                | 28.3    |
| Eddet River        | 20.7    | 23.5                | 20.1                | 20.0                | 18.5    |
| Depanay River      | 21.7    | 24.4                | 23.1                | 23.1                | 22.6    |
| Asin Gallano River | 25.7    | 27.5                | 23.8                | 25.9                | 26.0    |
| Balili River       | 23.5    | 23.5                | 22.8                | 21.5                | 21.3    |

|                     | 20                  | 15                  |                     | 2016                |                     |                     |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr | 1 <sup>st</sup> Qtr | 2 <sup>nd</sup> Qtr | 4 <sup>th</sup> Qtr |
| (°C)                |
| 19.8                | 22.2                | 23.4                | 21.9                | 22.1                | 24.7                | 23.1                |
| -                   | 18.2                | 18.8                | 13.4                | 16.6                | 22.6                | 15.8                |
| 20.5                | -                   | 22.3                | 22.2                | 23.1                | 27.9                | 22.6                |
| 23.9                | 27.9                | 27.6                | 27.0                | 23.6                | 29.7                | 28.4                |
| -                   | 23.2                | 21.8                | 19.3                | 21.9                | 23.6                | 21.1                |
| -                   | 27.1                | 22.0                | 23.4                | 21.2                | 20.1                | 22.5                |
| 19.5                | -                   | 22.4                | 20.3                | 23.3                | 26.7                | 21.4                |
| 20.3                | -                   | 21.0                | 23.5                | 22.0                | 25.2                | 22.0                |
| -                   | 22.1                | 21.0                | 18.2                | 19.0                | 23.4                | 18.4                |
| -                   | 27.4                | 24.6                | 25.1                | 22.5                | 22.4                | 25.7                |
| -                   | 26.4                | 21.3                | 20.2                | 22.1                | 26.2                | 19.4                |
| 20.2                | -                   | 22.3                | 22.7                | 21.6                | 26.7                | 22.1                |
| 23.9                | 26.0                | 24.9                | 23.4                | 23.6                | 30.2                | 25.1                |
| 20.5                | 21.5                | 21.5                | 20.6                | 20.8                | 22.4                | 21.4                |

| 2018                |                     |                     |  |  |  |  |
|---------------------|---------------------|---------------------|--|--|--|--|
| 2 <sup>nd</sup> Qtr | 3 <sup>rd</sup> Qtr | 4 <sup>th</sup> Qtr |  |  |  |  |
| (°C)                | (°C)                | (°C)                |  |  |  |  |
| 24.3                | 21.2                | 22.9                |  |  |  |  |
| 18.7                | 16.9                | 14.6                |  |  |  |  |
| 26.0                | 22.8                | 23.8                |  |  |  |  |
| 30.6                | 26.8                | 28.5                |  |  |  |  |
| 22.4                | 21.1                | 22.0                |  |  |  |  |
| 25.3                | 22.7                | 22.2                |  |  |  |  |
| 22.4                | 21.0                | 22.4                |  |  |  |  |
| 26.0                | 22.4                | 22.7                |  |  |  |  |
| 20.0                | 19.0                | 19.0                |  |  |  |  |
| 30.4                | 24.8                | 25.5                |  |  |  |  |
| 23.7                | 19.5                | 18.4                |  |  |  |  |
| 24.4                | 22.0                | 22.5                |  |  |  |  |
| 28.5                | 24.5                | 23.0                |  |  |  |  |
| 22.3                | 21.9                | 21.9                |  |  |  |  |

**Table 1.17 Concentration Levels of Particulate Matter 10 (PM10)** 2011 to 2018

| Region | Location                                                                                 | 2011 | 2012 | 2013 | 2014 | 2015  | 2016 | 2017 | 2018 |
|--------|------------------------------------------------------------------------------------------|------|------|------|------|-------|------|------|------|
| CAR    | Plaza Garden Park, Central<br>Business District, Lower Session<br>Road, Baguio City (RT) | 68.2 | 79.7 | 69.3 |      | 124.5 | 82.6 | 81.0 | 71.0 |





## **ENVIRONMENTAL RESOURCES AND THEIR USE**

Component 2 is a collection of statistics that describe the interaction between the environment and human activities. It presents the stocks and changes in stocks of environmental resources brought about by human interventions. Environmental resources are defined as "the naturally living and non-living components of the Earth together constituting the biophysical environment, which may provide benefits to humanity". 4

The statistics compiled for this component are indicators that can be used to monitor the achievement of Sustainable Development Goals (SDG). The core statistics under this component have several connections to the 2030 Sustainable Agenda. Some of these are Goal 2 – food security; Goal 6 – availability of clean water; Goal 7 – sufficiency of energy; Goal 13 – provision of resources and mitigation of global warming; and Goals 14 and 15 - maintenance of life on water and land, respectively. These statistics are linked together to arrive at Goal 12 – responsible consumption; SDG 8 – sustainable growth; and SDG 9 – innovation.

This component covers six subcomponents focusing on (1) mineral resources, (2) energy resources, (3) land, (4) soil resources, (5) biological resources, and (6) water resources. Its core statistics mainly report on stocks and changes in the stocks of these resources. Energy resources are not reported in this document due to unavailability of regional data.

There are 30 core statistics in Component Two. The limited sources only allowed the compilation of 15 statistics scattered in the six subcomponents. The remaining half of the core statistics are not included for various reasons. The region has no available data on energy resources and groundwater resources. There is also no official data on land use area, natural fertilizer use, and pesticide use. Data on the volume of water inflows from neighboring territories is not included because it does not apply to the region and the revised FDES does not yet define the scope of the statistic for archipelagic countries like the Philippines.

#### Mineral resources 2.1.

Minerals are defined as the "elements or compounds composed of a concentration of naturally occurring solid, liquid or gaseous materials in or on the earth's crust"<sup>5</sup>. Minerals are categorized into two, namely metallic an non-metallic minerals. Metallic minerals include gold, silver and copper, and non-metallic minerals include precious gems, sand and clay. By definition, coal and petroleum resources are also considered as non-metallic minerals, but due to their capacity to provide energy, they are included in Energy Resources.

Mineral resources are non-renewable. They do not regenerate on any human timescale. This implies that the rate at which they are extracted is also the rate of their depletion. Since they cannot be renewed, sustainable use of these resources must be practiced by the industries engaged in mining.

#### 2.1.1. Metallic and non-metallic mineral resource/reserve

The core statistics under this topic is the Inventory of Mineral Resources and the Volume of Mineral Production. The Mines and Geosciences Bureau provided both reports covering the period 2008-2018.

<sup>&</sup>lt;sup>4</sup>System of Environmental-Economic Accounting 2012 Central Framework

<sup>&</sup>lt;sup>5</sup>United Nations for the Development of Environment Statistics 2013 (Final official edited version)

Cordillera region has two prime commodities of metallic mineral resources – gold and copper. According to the Annual Mineral Resources/Reserves Inventory, CAR has 69.6 million tons of metallic mineral resources of which 86 percent is copper and 14 percent is gold. The average rate of extraction for gold reserves was estimated at 462,491 MT from 2008 to 2018. Extraction for copper reserves on the other hand posted an average of 8.6 million MT for the same period.

Gold 14% Copper 86%

Figure 2.1 Percentage Distribution of Metalic Minerals Reserve, **CAR:2018** 

Source of basic data: Mines and Geosciences Bureau - CAR

## 2.1.2. Mineral production

The production of precious metals gold and silver is shown in Figure 2.2. Gold and silver production displayed an overall downtrend from 2008 to 2018. Gold posted the highest production in 2010 at 6.0 thousand kilograms and the lowest in 2018 at 3.1 thousand kilograms. Meanwhile, silver posted the highest production in 2008 at 9.9 thousand kilograms and the lowest in 2013 at 3.8 thousand kilograms.

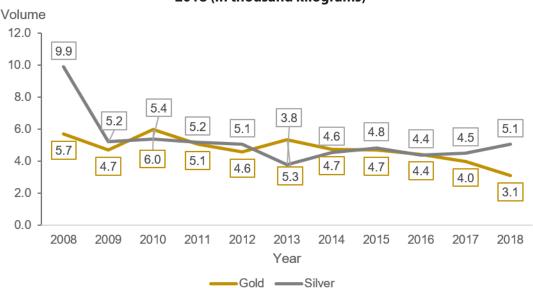



Figure 2.2 Volume of Production of Gold and Silver, CAR: 2008-2018 (In thousand kilograms)

Source of basic data: Mines and Geosciences Bureau - CAR

#### 2.2. **Biological resources**

The list of core statistics for biological resources includes timber resources, aguatic resources, crops, livestock, and other non-cultivated biological resources. Unlike mineral and energy resources, biological resources are renewable. Therefore, harvest of these resources must not exceed the rate of regeneration.

At present, there are no core statistics to be compiled under other non-cultivated biological resources. The data presented in this subcomponent came from DENR and PSA.

#### 2.2.1. Aquatic resources

Aquatic resources include different species of fish, crustaceans, mollusks and aquatic plants. The core statistics under this topic includes the levels of fish capture production and aquaculture production.

Statistics on fish capture production are divided into three: (1) commercial fisheries, (2) inland municipal fisheries, and (3) marine municipal fisheries. Commercial and municipal fishing differs in the capacity of fishing vessels or boats used. Commercial fishing is the catching of fish using boats with capacity of three gross tons, either for trade, business or profit beyond subsistence, or sports. Municipal fishing utilizes fishing vessels with three gross tons or less of capacity. Aquaculture production, on the other hand is presented according to the type of environment (brackish water, freshwater or marine water); and type of facility (ponds, pens, cages or reservoirs). Oyster, mussel and seaweed farming are also included under Aquaculture. Statistics on fish capture and aquaculture production were provided by the Philippine Statistics Authority.

Fishery production in CAR only includes freshwater aquaculture and inland municipal fishery. About 75 percent of the fish production in the region came from Aquaculture and the remainder was the output of Inland Municipal Fishing. The driver of aquaculture and inland municipal fishery is tilapia production.

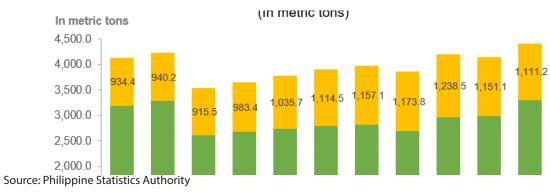



Figure 2.3 Fish Production by Type of Fishery, CAR: 2008 to 2018

## 2.2.2. Crops

The core statistics compiled for this topic were amount produced, area planted, area harvested and amount used of inorganic fertilizers. All these statistics were sourced from the data produced by PSA.

Statistics for area harvest and area produced were not differentiated and are compiled in the same table. The amount used of inorganic fertilizers was presented in two ways: by area applied and harvested and the amount applied by grade. Data on the amount used of natural fertilizers and pesticides were not available.

The amount of production and area planted/harvested covered palay, corn and 66 other crops. Statistics on the volume of production and area planted/harvested for palay were classified into irrigated and

rainfed palay while corn was categorized into white and yellow corn. The most recent collected statistics on the use of inorganic fertilizers include up to 2014 only. The area applied and harvested with inorganic fertilizers were also available for palay and corn only.

Total area planted/harvested of palay in CAR decreased by an annual average of 0.7 percent from 119,816 hectares in 2008 to 111,387 hectares in 2018 or equivalent to an annual average decline of 842.9 hectares. Area planted/harvested of palay for irrigated palay covered almost 80 percent of the total area

Area (in ha) Volume (in MT) 100,000.0 450,000.0 90,000.0 400,000.0 80,000.0 350,000.0 70,000.0 300,000.0 60,000.0 250,000.0 50,000.0 200,000.0 40,000.0 150,000.0 30,000.0 100,000.0 20,000.0 50,000.0 10,000.0 0.0 0.0 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2008 Year Irrigated Palay (Area) Rainfed Palay (Area) --- Irrigated Palay (Production) --- Rainfed Palay (Production)

Figure 2.4 Area Planted/Harvested and Volume of Production of Palay in CAR: 2008 - 2018

Source: Philippine Statistics Authority

while rainfed palay covered the remaining 20 percent. Volume of production for palay consequently decreased by an annual average of 0.9 percent or 5,405.1 MT yearly decline from 445,156 MT in 2008 to 391,105 MT. On the average, irrigated palay contributed 85.8 percent of the total production while rainfed palay shared 14.2 percent.

The total area planted/harvested of corn increased from 52,698 hectares in 2008 to 58,405 hectares in 2018. This translates to an annual average increase of 1.3 percent or 570.7 hectares annual increment in the total area planted/harvested for corn production in the region. Volume of production also increased from 196,421 MT in 2008 to 207,439 MT in 2018 with an annual average growth of 1.5 percent or an annual increment of 1,101.8 MT. Average share of production of yellow corn was 91.5 percent. The highest volume was recorded in 2017 with 224,962 MT while the lowest was in 2010 with 156,518 MT. The 8.5 percent remainder was the average contribution of white corn to the total production for the span of 11 years.

Yellow Corn and White Corn, CAR: 2008-2018 Volume (in MT) Area (in ha) 60,000.0 250,000.0 50,000.0 200,000.0 40,000.0 150,000.0 30,000.0 100,000.0 20,000.0 50,000.0 10,000.0 0.0 0.0 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Year Yellow Corn (Area) White Corn (Area) Yellow Corn (Production) — White Corn (Production)

Figure 2.5 Area Planted/Harvested and Volume of Production of

Source: Philippine Statistics Authority

## 2.2.3. Livestock

The FDES defined livestock as animals raised by humans for commercial purposes, consumption or labor. Data for the only core statistics in this topic came from the Livestock Inventory as of January 1 of the indicated year. The statistics gathered refers to the number of cattle, carabao, hog, goat, chicken and duck which were also classified according to farm type (i.e. commercial or backyard), except for chicken, which was categorized into broilers, layers and native/improved chicken.

For four-legged animals, commercial farms are those that satisfy one of the following: (a) at least 21 adults and zero young; (b) at least 41 heads of young animals; (c) at least 10 heads of adults and 22 heads of young animals. For poultry, a commercial farm should satisfy any of the following criteria: (a) 500 layers or 1000 broilers; (b) 100 layers and 100 broilers if raised in combination; (c) 100 heads of ducks regardless of age. Backyard farms refer to those that do not fall in the category of commercial farming.

Based on the statistics gathered, the largest livestock was swine with numbers from 188,937 heads (2017) to 211,886 heads (2013) with 98.2 percent raised in backyard farms and 1.2 percent raised in commercial farms (2018). Inventory of cattle posted the least number with only 60,364 maximum heads in 2016, majority of which was raised in backyard farms (86.7 percent). Likewise, most of the carabaos and goats were raised in backyard farms.

Chicken inventory was highest in 2011 with 1.8 million heads, most of which were native/improved. For the inventory of ducks, 2018 had the highest with 297,038 heads, all were raised in backyard farms.

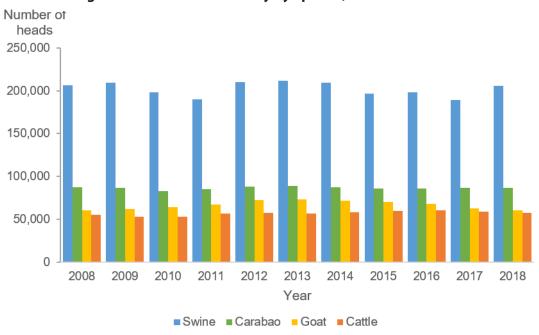



Figure 2.6 Livestock Inventory by Species, CAR: 2008-2018

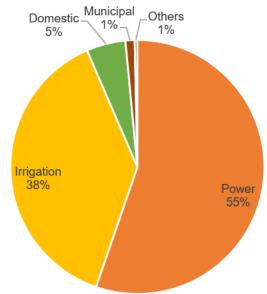
Source: Philippine Statistics Authority

#### 2.3. Water resources

There are two topics for this subcomponent. One of these is water resource flows. The FDES 2013 recommends compiling data on precipitation, inflow from neighboring territories and evapotranspiration.Out of these core statistics, the only data collected was evaporation. Evapotranspiration is not yet being captured by the facilities of PAGASA. It takes into account the vaporization of water in plant tissues, aside from the evaporation of water. The volume of precipitation is already presented in Component One. No data was collected for the inflows of water from neighboring territories.

Another topic for this subcomponent is the the flow of water starting from abstraction to its return to the environment. The core statistics recommended by the FDES under this topic are the total amount of water abstraction, the amount abstracted from surface water, and the amount abstracted from renewable and non-renewable groundwater.

There is no data available on actual water abstraction. Data on Water Permits Granted provided by the EMB-CAR covering the period 2008 to 2018 were used as proxy indicators.


#### 2.3.1. Water resource flows

The data on evaporation from PAGASA were generated from the monitoring facility in Benguet State University, La Trinidad, Benguet. During the period covered, volume of evaporation was highest in 2013. Volume of evaporation generally dropped during the month of August where precipitation was highest. The highest observed evaporation was also seen in 2013 during the month of July.

## 2.3.2. Abstraction of water

Based on the data on water permits granted, water used for generating power had the highest percentage of allocation with 55 percent. Water allocation for irrigation came second with 38 percent, followed by Domestic use with 5 percent. The data also revealed that the common source of water in CAR was surface water, and this was mainly for power generation.

Figure 2.7 Percentage Distribution of Total Water Allocated by Use, CAR: 2018



Source: Environmental Management Bureau





# **STATISTICAL TABLES Environmental Resources and their Use**

Table 2.1 Stock of Commercially Recoverable Gold and Copper Resources, Ectraction and Average Grade, CAR: 2008 to 2018

|      |           | Gold       |            |            | Copper     |         |
|------|-----------|------------|------------|------------|------------|---------|
| Year | Volume    | Extraction | Ave. Grade | Volume     | Extraction | Average |
|      | (Tons)    | Extraction | g/t Au     | (Tons)     | Extraction | %Cu     |
| 2008 | 5,193,709 | 474,089    | 8.6        | 54,700,000 | 8,973,520  | 0.24    |
| 2009 | 2,684,229 | 389,254    | 10.5       | 69,200,000 | 8,183,683  | 0.23    |
| 2010 | 3,030,749 | 337,046    | 8.4        | 90,200,000 | 9,368,936  | 0.23    |
| 2011 | 9,128,082 | 529,160    | 8.8        | 80,800,000 | 9,477,575  | 0.20    |
| 2012 | 8,559,342 | 568,740    | 8.8        | 73,500,000 | 5,607,858  | 0.21    |
| 2013 | 8,344,352 | 745,309    | 9.5        | 66,000,000 | 7,729,938  | 0.21    |
| 2014 | 7,714,146 | 381,429    | 10.9       | 59,700,000 | 9,504,933  | 0.20    |
| 2015 | 5,558,082 | 349,846    | 9.7        | 69,700,000 | 9,195,265  | 0.20    |
| 2016 | 9,928,082 | 295,464    | 3.7        | 59,700,000 | 9,341,663  | 0.20    |
| 2017 | 9,928,082 | 424,492    | 4.0        | 59,700,000 | 8,674,809  | 0.19    |
| 2018 | 9,928,082 | 592,569    | 3.9        | 59,700,000 | 8,652,155  | 0.18    |

Source of basic data: Mines and Geosciences Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

Table 2.2 Nonmetallic Minerals Resource/Reserve Inventory, CAR 2008 to 2018 (in metric tons)

| Year | Sand and Gravel | Limestone     |
|------|-----------------|---------------|
| 2008 | 977,815.0       | 150,253,447.0 |
| 2009 | 943,700.0       | 150,253,447.0 |
| 2010 | 907,500.0       | 150,253,447.0 |
| 2011 | 1,080,650.7     | 150,253,447.0 |
| 2012 | 1,042,209.0     | 150,253,447.0 |
| 2013 | 984,383.8       | 150,253,447.0 |
| 2014 | 940,712.7       | 140,314,311.0 |
| 2015 | 1,343,713.8     | 139,778,579.0 |
| 2016 | 835,632.8       | 139,146,383.6 |
| 2017 | 850,092.7       | 139,145,887.5 |
| 2018 | 802,889.5       | 139,135,643.8 |

Source of basic data: Mines and Geosciences Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

Table 2.3 **Mineral Production** 2008 to 2018 (volume in thousands unit used, value in million pesos) (continued)

| Mineral/Mineral    | Unit Used | 20     | 08      | 20     | 09      | 20     | 10      |
|--------------------|-----------|--------|---------|--------|---------|--------|---------|
| Product            | Onit Osed | Volume | Value   | Volume | Value   | Volume | Value   |
| Metallics          |           |        |         |        |         |        |         |
| Gold               | kg        | 5.7    | 6,584.0 | 4.7    | 6,589.4 | 6.0    | 8,635.0 |
| Gold (small scale) | kg        | 0.0    | 2.3     | 0.0    | 2.8     | 0.0    | 3.3     |
| Silver             | kg        | 9.9    | 171.1   | 5.2    | 118.1   | 5.4    | 160.8   |
| Copper             | MT        | 19.3   | -       | 15.9   | -       | 16.2   | -       |
| Copper Concentrate | DMT       | 87.7   | 6,920.8 | 62.0   | 3,619.5 | 65.3   | 5,723.9 |
| Non-metallics      |           |        |         |        |         |        |         |
| Sand and Gravel    | Cu.M.     | 161.8  | 28.2    | 220.3  | 35.2    | 243.6  | 40.2    |
| Slaked lime        | MT        | 0.2    | 1.2     | 0.3    | 1.7     | 0.3    | 1.7     |
| Quicklime          | MT        | 9.3    | 64.7    | 7.4    | 49.4    | 7.4    | 50.0    |

Source of basic data: Mines and Geosciences Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

Table 2.3 **Mineral Production** 2008 to 2018 (volume in thousands unit used, value in million pesos)

| Mineral/Mineral    | Unit Used | 20     | 15      | 20     | 16      | 20      | 17      |
|--------------------|-----------|--------|---------|--------|---------|---------|---------|
| Product            | Unit Used | Volume | Value   | Volume | Value   | Volume  | Value   |
| Metallics          |           |        |         |        |         |         |         |
| Gold               | kg        | 4.7    | 7,457.1 | 4.4    | 8,558.7 | 4.0     | 7,186.9 |
| Gold (small scale) | kg        | 0.0    | 22.4    | 0.0    | 7.6     | 0.0     | 5.8     |
| Silver             | kg        | 4.8    | 104.8   | 4.4    | 118.9   | 4.5     | 112.0   |
| Copper             | MT        | 15.5   | -       | 15.9   | -       | 13.6    | -       |
| Copper Concentrate | DMT       | 70.0   | 3,520.3 | 73.1   | 3,781.6 | 65.3    | 4,682.1 |
| Non-metallics      |           |        |         |        |         |         |         |
| Sand and Gravel    | Cu.M.     | 903.2  | 152.6   | 770.3  | 163.6   | 1,022.1 | 517.2   |
| Slaked lime        | MT        | 0.1    | 0.3     | 0.0    | 0.2     | 0.1     | 0.4     |
| Quicklime          | MT        | 7.8    | 59.1    | 9.3    | 76.7    | 9.4     | 76.2    |

Source: Mines and Geosciences Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

| 20     | 11       | 20     | 2012    |        | 2013    |        | 14      |
|--------|----------|--------|---------|--------|---------|--------|---------|
| Volume | Value    | Volume | Value   | Volume | Value   | Volume | Value   |
|        |          |        |         |        |         |        |         |
| 5.1    | 7,982.8  | 4.6    | 7,359.6 | 5.3    | 7,359.6 | 4.7    | 8,241.4 |
| 0.0    | 3.3      | 0.0    | 8.3     | 0.0    | 8.7     | -      | -       |
| 5.2    | 246.0    | 5.1    | 158.0   | 3.8    | 162.1   | 4.6    | 122.6   |
| 14.2   | -        | 13.6   | -       | 10.1   | -       | 16.1   | -       |
| 69.6   | 13,114.8 | 74.2   | 3,969.5 | 40.5   | 3,969.5 | 70.1   | 4,759.4 |
|        |          |        |         |        |         |        |         |
| 355.5  | 37.0     | 515.6  | 136.8   | 479.2  | 37.2    | 756.9  | 121.1   |
| 0.4    | 2.1      | 0.5    | 2.5     | 0.0    | 0.2     | 0.1    | 0.7     |
| 8.2    | 54.7     | 8.7    | 58.1    | 9.1    | 60.8    | 9.8    | 65.5    |

| 2018   |         |  |  |  |  |  |
|--------|---------|--|--|--|--|--|
| Volume | Value   |  |  |  |  |  |
|        |         |  |  |  |  |  |
| 3.1    | 6,659.7 |  |  |  |  |  |
| -      | -       |  |  |  |  |  |
| 5.1    | 124.2   |  |  |  |  |  |
| 12.1   | -       |  |  |  |  |  |
| 55.4   | 3,589.5 |  |  |  |  |  |
|        |         |  |  |  |  |  |
| 514.4  | 120.1   |  |  |  |  |  |
| 1.7    | 15.3    |  |  |  |  |  |
| 9.0    | 92.2    |  |  |  |  |  |

Table 2.4 **Forest Disturbance by Province** 2008 to 2018 (area in hectares)

| Year  | Kaingin | Forest Fire | Illegal Logging | Pest/ Diseases | Total    |
|-------|---------|-------------|-----------------|----------------|----------|
| 2008  | 15.0    | 99.5        | 0.2             | -              | 114.7    |
| 2009  | 5.5     | 69.0        | 0.6             | -              | 75.1     |
| 2010  | 311.0   | 8,216.6     | 0.2             | -              | 8,527.8  |
| 2011  | -       | 44.0        | 2.6             | -              | 46.6     |
| 2012  | 7.0     | 39.0        | 2.8             | -              | 48.8     |
| 2013  | 467.5   | 803.6       | 0.9             | 1.6            | 1,273.6  |
| 2014  | 438.6   | 2,320.6     | 1.5             | -              | 2,760.6  |
| 2015  | 299.8   | 2,729.0     | 2.2             | -              | 3,031.0  |
| 2016  | 1,025.2 | 3,500.4     | 0.1             | -              | 4,525.7  |
| 2017  | 13.1    | 779.2       | 0.0             | -              | 792.3    |
| 2018  | 81.5    | 2,641.6     | 0.1             | 1.5            | 2,724.7  |
| Total | 2,664.0 | 21,242.4    | 11.2            | 3.1            | 23,920.7 |

Source: Department of Environment and Natural Resources - Cordillera Administrative Region

Table 2.5 **Stocks of Timber Resources, CAR** 2008 to 2018 (in thousands of cubic meters)

|      | Natural timbe                                 | er resources                                        | Cultius to al timely an                         |                         |  |
|------|-----------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------|--|
| Year | Available for<br>wood supply<br>(Open forest) | Not Available for<br>wood supply<br>(Closed forest) | Cultivated timber resources (Plantation forest) | Total tree-covered area |  |
| 2008 | 94,282.3                                      | 43,506.4                                            | 3,059.2                                         | 140,847.9               |  |
| 2009 | 94,307.0                                      | 43,505.9                                            | 3,069.8                                         | 140,882.7               |  |
| 2010 | 93,395.1                                      | 43,453.8                                            | 2,679.0                                         | 139,527.8               |  |
| 2011 | 93,689.8                                      | 43,453.5                                            | 2,919.4                                         | 140,062.6               |  |
| 2012 | 95,012.8                                      | 43,453.1                                            | 3,998.6                                         | 142,464.4               |  |
| 2013 | 96,442.8                                      | 43,444.1                                            | 5,165.2                                         | 145,052.1               |  |
| 2014 | 99,156.7                                      | 43,424.5                                            | 7,379.0                                         | 149,960.1               |  |
| 2015 | 98,786.4                                      | 43,402.2                                            | 7,077.0                                         | 149,265.6               |  |
| 2016 | 98,814.5                                      | 43,375.8                                            | 7,089.0                                         | 149,279.2               |  |
| 2017 | 99,507.0                                      | 43,371.2                                            | 7,385.8                                         | 150,263.9               |  |
| 2018 | 101,566.4                                     | 43,355.2                                            | 8,268.4                                         | 153,190.0               |  |

Source: Philippine Statistics Authority - Cordillera Administrative Region

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                           | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cordillera                |         |         |         |         |         |         |         |         |         |         |         |
| Administrative Region     | 3,195.6 | 3,288.5 | 2,618.7 | 2,676.2 | 2,741.9 | 2,793.0 | 2,819.6 | 2,692.9 | 2,963.7 | 2,996.9 | 3,307.6 |
| Brackishwater<br>Fishpond |         | •••     |         |         | •••     |         |         | •••     |         | •••     | •••     |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     |
| Tiger prawn               |         |         |         |         |         |         |         |         |         |         |         |
| Mudcrab                   | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     |
| Endeavor prawn            |         | •••     |         |         |         |         |         | •••     |         |         | •••     |
| White shrimp              |         |         |         |         |         |         |         |         |         |         |         |
| Grouper                   |         |         |         |         |         |         |         |         |         |         |         |
| Siganid                   |         |         |         |         |         |         |         |         |         |         |         |
| Others                    |         |         |         |         |         |         |         |         |         |         |         |
| Brackishwater<br>Pen      |         |         |         |         |         |         | •••     |         | •••     |         | •••     |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   |         |         |         |         |         |         |         |         |         |         |         |
| Grouper                   |         |         |         |         |         |         |         |         |         |         |         |
| Siganid                   |         |         |         |         |         |         |         |         |         |         |         |
| Others                    |         |         |         |         |         |         |         |         |         |         |         |
| Brackishwater<br>Cage     |         |         |         |         |         |         |         |         |         |         |         |
| Milkfish                  |         | •••     |         |         |         |         |         | •••     |         |         | •••     |
| Tilapia                   |         |         |         |         |         |         |         |         |         |         |         |
| Grouper                   |         | •••     |         |         |         |         |         |         |         |         | •••     |
| Siganid                   |         |         |         |         |         |         |         |         |         |         |         |
| Others                    |         | •••     |         |         |         |         |         |         |         |         |         |
| Freshwater<br>Fishpond    | 1,667.5 | 1,829.0 | 1,646.8 | 1,765.2 | 1,826.1 | 1,856.0 | 1,860.2 | 1,756.9 | 1,854.1 | 1,803.5 | 1,886.9 |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   | 1,667.2 | 1,827.4 | 1,644.6 | 1,761.8 | 1,822.1 | 1,853.3 | 1,858.3 | 1,756.1 | 1,853.9 | 1,803.1 | 1,886.5 |
| Carp                      | 0.3     | 0.3     | 0.3     | 0.2     | 0.3     | 0.3     | 0.2     | 0.1     | 0.1     | 0.1     | 0.2     |
| Catfish                   |         | 0.0     | 0.0     |         | 2.2     | 0.9     | 0.9     | 0.6     | 0.0     | 0.1     | 0.2     |
| Gourami                   |         |         |         |         |         |         |         |         |         |         |         |
| Mudfish                   |         | 0.0     | 0.2     |         |         |         |         | 0.1     | 0.0     |         |         |
| Freshwater prawn          |         | •••     | •••     | •••     |         | •••     | •••     |         | •••     | •••     | •••     |
| Others                    |         | 1.4     | 1.7     | 3.2     | 1.5     | 1.4     | 0.9     |         |         | 0.1     |         |
| Freshwater Pen            |         |         |         |         |         |         |         |         |         |         |         |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons)

|                     | 2008    | 2009    | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016    | 2017    | 2018    |
|---------------------|---------|---------|-------|-------|-------|-------|-------|-------|---------|---------|---------|
| Tilapia             |         |         |       |       |       |       |       |       |         |         |         |
| Carp                |         |         |       |       |       |       |       |       |         |         |         |
| Catfish             |         |         | •••   |       |       |       |       |       |         |         |         |
| Others              | •••     |         |       |       |       |       |       |       |         |         |         |
| Freshwater<br>Cage  | 1,528.1 | 1,459.5 | 971.9 | 911.0 | 915.8 | 936.9 | 959.4 | 936.0 | 1,109.7 | 1,193.4 | 1,420.7 |
| Milkfish            |         |         |       |       |       |       |       |       |         |         |         |
| Tilapia             | 1,528.1 | 1,459.5 | 971.9 | 911.0 | 915.8 | 936.9 | 959.4 | 936.0 | 1,109.6 | 1,193.4 | 1,420.7 |
| Carp                |         | ·       |       |       |       |       |       |       | 0.0     |         |         |
| Catfish             | •••     | •••     |       | •••   | •••   | •••   | •••   |       |         |         | •••     |
| Others              | •••     | •••     | •••   | •••   | •••   | •••   | •••   | •••   |         | •••     | •••     |
| Marine Pen          | •••     | •••     | •••   | •••   | •••   | •••   | •••   | •••   | •••     | •••     | •••     |
| Milkfish            | •••     |         | •••   | •••   | •••   | •••   | •••   | •••   | •••     | •••     | •••     |
| Tilapia             | •••     | •••     | •••   | •••   | •••   | •••   | •••   | •••   | •••     | •••     | •••     |
|                     | •••     | •••     | •••   | •••   | •••   | •••   | •••   | •••   | •••     | •••     | •••     |
| Tiger prawn Mudcrab | •••     | •••     | •••   | •••   | •••   | •••   | •••   | •••   | •••     | •••     | •••     |
| Endeavor            |         |         | •••   | •••   | •••   | •••   | •••   | •••   | •••     | •••     | •••     |
| prawn               | •••     | •••     | •••   | •••   | •••   | •••   | •••   | •••   | ***     | •••     | •••     |
| White shrimp        |         |         | •••   | •••   | •••   | •••   |       |       |         |         |         |
| Grouper             |         |         | •••   |       |       |       |       |       |         |         |         |
| Siganid             |         |         |       |       |       |       |       |       |         |         |         |
| Spiny lobster       | •••     |         |       |       |       |       | •••   |       |         | •••     |         |
| Others              | •••     |         |       |       |       |       |       |       |         | •••     |         |
| Marine Cage         | •••     |         |       |       |       |       |       |       |         | •••     |         |
| Milkfish            |         |         |       |       |       |       |       |       |         |         |         |
| Tilapia             |         |         | •••   |       |       |       |       |       |         |         |         |
| Tiger prawn         |         |         |       |       |       |       |       |       |         |         |         |
| Mudcrab             | •••     |         | •••   | •••   | •••   | •••   | •••   | •••   |         | •••     |         |
| Endeavor<br>prawn   |         |         |       |       |       |       |       |       |         |         |         |
| White shrimp        |         |         |       |       |       |       |       |       |         |         |         |
| Grouper             |         |         |       |       |       |       |       |       |         |         |         |
| Siganid             |         |         |       |       |       |       |       |       |         |         |         |
| Spiny lobster       |         |         |       |       |       |       |       |       |         |         |         |
| Others              |         |         |       |       |       |       |       |       |         |         |         |
| Oyster              | •••     |         |       |       | •••   |       |       |       | •••     | •••     | •••     |
| Mussel              |         |         |       |       |       |       |       |       |         |         |         |
| Seaweed             |         |         |       |       |       |       |       |       |         |         |         |
| Rice Fish           |         |         |       |       |       |       |       |       |         |         |         |
| Milkfish            |         |         |       |       |       |       |       |       |         |         |         |
| Tilapia             |         |         |       |       |       |       |       |       |         |         |         |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                           | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Carp                      |       |       |       |       |       |       |       |       |       |       |       |
| Catfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Gourami                   | •••   |       |       |       |       |       | •••   | •••   |       |       |       |
| Mudfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    |       |       |       |       |       |       |       |       |       | •••   |       |
| Small Farm<br>Reservoir   |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish                  |       | •••   |       | •••   |       |       |       |       |       | •••   |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Carp                      |       |       |       |       |       |       |       |       |       |       |       |
| Catfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Gourami                   |       |       |       |       |       | •••   |       |       | •••   | •••   |       |
| Mudfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    |       |       |       |       |       |       |       |       |       |       |       |
| Abra                      | 441.2 | 465.9 | 451.6 | 459.0 | 482.5 | 469.6 | 452.0 | 413.6 | 399.1 | 357.5 | 359.0 |
| Brackishwater<br>Fishpond |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish                  |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Tiger prawn               |       |       |       |       |       |       |       |       |       |       |       |
| Mudcrab                   |       |       |       |       |       |       |       |       |       |       |       |
| Endeavor<br>prawn         |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp              | •••   | •••   |       | •••   | •••   |       | •••   |       | •••   | •••   |       |
| Grouper                   | •••   | •••   |       | •••   | •••   |       |       |       |       | •••   |       |
| Siganid                   |       | •••   |       | •••   |       |       |       |       |       | •••   |       |
| Others                    |       | •••   |       | •••   |       |       |       |       |       | •••   |       |
| Brackishwater<br>Pen      |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish                  |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                   |       |       |       | •••   |       |       |       |       |       |       |       |
| Grouper                   |       |       |       |       |       |       |       |       |       |       |       |
| Siganid                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    |       |       |       |       |       |       |       |       |       |       |       |
| Brackishwater<br>Cage     |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish                  |       | •••   |       |       |       |       |       |       |       | •••   |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Grouper                   |       |       |       |       |       |       |       |       |       |       |       |
| Siganid                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    |       |       |       |       |       |       |       |       |       |       |       |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons)

|                     | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Freshwater          | 441.2 | 465.9 | 451.6 | 459.0 | 482.5 | 469.6 | 452.0 | 413.6 | 399.1 | 357.5 | 359.0 |
| Fishpond            |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish            |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia             | 441.2 | 465.9 | 451.6 | 458.3 | 481.5 | 468.4 | 451.1 | 413.6 | 399.1 | 357.5 | 359.0 |
| Carp                | •••   | •••   | •••   |       |       |       | •••   |       |       |       | •••   |
| Catfish             |       | •••   | •••   |       |       |       | •••   |       |       | •••   |       |
| Gourami             |       |       |       |       |       |       |       |       |       |       |       |
| Mudfish             |       | •••   |       |       |       |       | •••   |       |       |       |       |
| Freshwater<br>prawn |       |       |       |       |       |       |       |       | •••   |       |       |
| Others              | •••   | •••   | •••   | 0.7   | 1.0   | 1.1   | 0.9   |       |       |       | •••   |
| Freshwater<br>Pen   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |
| Milkfish            |       |       |       |       |       |       |       |       |       | •••   | •••   |
| Tilapia             |       |       |       |       |       |       |       |       |       |       |       |
| Carp                |       |       |       |       |       |       |       |       |       |       |       |
| Catfish             |       |       |       |       |       |       |       |       |       |       |       |
| Others              |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater<br>Cage  | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       |
| Milkfish            | •••   | •••   | •••   |       |       |       | •••   |       |       | •••   | •••   |
| Tilapia             |       |       |       |       |       |       |       |       |       |       |       |
| Carp                |       |       |       |       |       |       |       |       |       |       |       |
| Catfish             |       |       |       |       |       |       |       |       |       |       |       |
| Others              |       |       |       |       |       |       |       |       |       |       |       |
| Marine Pen          | •••   |       | •••   | •••   |       |       |       |       | •••   | •••   | •••   |
| Milkfish            |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia             | •••   |       | •••   | •••   |       |       |       |       | •••   | •••   | •••   |
| Tiger prawn         | •••   | •••   | •••   |       |       |       | •••   |       |       |       | •••   |
| Mudcrab             | •••   | •••   | •••   |       |       |       | •••   |       |       |       |       |
| Endeavor<br>prawn   |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp        |       |       |       |       |       |       |       |       |       |       |       |
| Grouper             |       |       |       |       |       |       |       |       |       |       |       |
| Siganid             |       |       |       |       |       |       |       |       |       |       |       |
| Spiny lobster       |       |       |       |       |       |       |       |       |       |       |       |
| Others              |       |       |       |       |       |       |       |       |       |       |       |
| <b>Marine Cage</b>  |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish            |       |       | •••   |       |       |       |       |       |       |       |       |
| Tilapia             |       |       |       |       |       |       |       |       |       |       |       |
| Tiger prawn         |       |       |       |       |       |       |       |       |       |       |       |
| Mudcrab             | •••   | •••   | •••   |       | •••   |       | •••   |       |       | •••   | •••   |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                        | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017 | 2018 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| Endeavor               |       |       |       |       |       |       |       |       |       |      |      |
| prawn                  |       |       |       |       |       |       |       |       |       |      |      |
| White shrimp           |       |       | •••   |       |       |       |       |       |       |      |      |
| Grouper                | •••   | •••   | •••   | •••   |       |       | •••   | •••   | •••   |      |      |
| Siganid                | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••  |      |
| Spiny lobster          | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |      |      |
| Others                 |       |       |       |       |       |       |       |       |       |      |      |
| Oyster                 |       | •••   | •••   |       |       |       | •••   | •••   |       | •••  |      |
| Mussel                 | •••   | •••   | •••   | •••   | •••   |       | •••   | •••   | •••   | •••  |      |
| Meaweed                | •••   |       | •••   |       |       |       |       |       |       |      |      |
| Rice Fish              |       |       |       |       |       |       |       |       |       |      |      |
| Milkfish               | •••   |       |       |       |       |       |       |       |       |      |      |
| Tilapia                |       |       |       |       |       |       |       |       |       |      |      |
| Carp                   |       |       |       |       |       |       |       |       |       |      |      |
| Catfish                | •••   | •••   | •••   | •••   | •••   |       | •••   | •••   | •••   | •••  | •••  |
| Gourami                |       |       |       |       |       |       |       |       |       |      |      |
| Mudfish                |       |       |       |       |       |       |       |       |       |      |      |
| Others                 | •••   |       | •••   |       |       |       | •••   |       |       |      |      |
| Small farm reservoir   | •••   |       |       |       |       |       |       |       |       |      |      |
| Milkfish               |       |       |       |       |       |       |       |       |       |      |      |
| Tilapia                |       |       |       |       |       |       |       |       |       |      |      |
| Carp                   |       |       |       |       |       |       |       |       |       |      |      |
| Catfish                |       |       |       |       |       |       |       |       |       |      |      |
| Gourami                |       |       |       |       |       |       |       | •••   | •••   | •••  |      |
| Mudfish                |       |       |       |       |       |       |       |       |       |      |      |
| Others                 |       |       |       |       |       |       |       |       |       |      |      |
| Apayao                 | 187.0 | 188.7 | 170.9 | 166.7 | 182.2 | 206.8 | 205.4 | 174.1 | 170.0 | 93.3 | 99.7 |
| Brackishwater fishpond |       |       |       |       |       |       |       |       |       |      |      |
| Milkfish               | •••   |       |       |       |       |       |       |       |       |      |      |
| Tilapia                |       |       |       |       |       |       |       |       |       |      |      |
| Tiger prawn            |       |       |       |       |       |       |       |       |       |      |      |
| Mudcrab                |       |       |       |       |       |       |       |       |       |      |      |
| Endeavor<br>prawn      |       |       |       |       |       |       |       |       |       |      |      |
| White shrimp           |       |       |       |       |       |       | •••   |       |       |      |      |
| Grouper                | •••   |       | •••   |       |       |       |       |       |       |      |      |
| Siganid                | •••   |       |       |       |       |       |       |       |       |      | •••  |
| Others                 |       |       |       |       |       |       |       |       |       |      |      |
| Brackishwater<br>Pen   |       |       |       |       |       |       |       |       |       |      |      |
|                        |       |       |       |       |       |       |       |       |       |      |      |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons)

|                        | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017 | 2018 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| Milkfish               |       |       |       |       |       |       |       |       |       |      |      |
| Tilapia                |       |       |       |       |       |       |       |       |       |      |      |
| Grouper                |       |       |       |       |       |       |       |       |       |      |      |
| Siganid                |       |       |       |       |       |       |       |       |       |      |      |
| Others                 |       |       |       |       |       |       |       |       |       |      |      |
| Brackishwater<br>Cage  |       |       |       |       |       |       |       |       |       |      |      |
| Milkfish               |       |       |       |       |       |       |       |       |       |      |      |
| Tilapia                |       |       |       |       |       |       |       |       |       |      |      |
| Grouper                |       |       |       |       |       |       |       |       |       |      |      |
| Siganid                |       |       |       |       |       |       |       |       |       |      |      |
| Others                 |       | •••   | •••   |       | •••   |       | •••   |       |       |      |      |
| Freshwater<br>Fishpond | 186.6 | 187.0 | 170.8 | 166.7 | 181.9 | 206.2 | 205.4 | 174.1 | 170.0 | 93.3 | 97.7 |
| Milkfish               |       |       |       |       |       |       |       |       |       |      |      |
| Tilapia                | 186.6 | 186.9 | 170.7 | 166.7 | 180.1 | 206.2 | 205.4 | 174.1 | 170.0 | 93.3 | 97.6 |
| Carp                   | •••   | •••   | •••   |       | •••   |       | •••   |       |       |      |      |
| Catfish                | •••   | 0.0   | 0.0   |       | 1.8   |       | •••   |       | 0.0   |      | 0.1  |
| Gourami                | •••   | •••   | •••   |       | •••   |       | •••   |       |       |      |      |
| Mudfish                | •••   | 0.0   | 0.1   |       | •••   |       | •••   |       |       | •••  |      |
| Freshwater<br>prawn    | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••  |      |
| Others                 |       | 0.1   | •••   |       | •••   |       | •••   |       |       | •••  |      |
| Freshwater<br>Pen      |       |       |       |       |       |       |       |       |       |      |      |
| Milkfish               |       |       | •••   |       |       |       |       |       |       |      |      |
| Tilapia                |       | •••   | •••   |       | •••   |       |       |       |       |      |      |
| Carp                   |       |       | •••   |       | •••   |       |       |       |       |      |      |
| Catfish                |       |       | •••   |       | •••   |       |       |       |       |      |      |
| Others                 |       |       |       |       |       |       |       |       |       |      |      |
| Freshwater<br>Cage     | 0.5   | 1.7   | 0.1   |       | 0.2   | 0.6   |       |       |       |      | 2.0  |
| Milkfish               |       |       |       |       |       |       |       |       |       |      |      |
| Tilapia                | 0.5   | 1.7   | 0.1   |       | 0.2   | 0.6   |       |       |       |      | 2.0  |
| Carp                   |       |       |       |       |       |       |       |       |       |      |      |
| Catfish                |       |       | ***   |       |       |       |       |       |       |      |      |
| Others                 |       |       |       |       |       |       |       |       |       |      |      |
| Marine Pen             |       |       |       |       |       |       |       |       |       |      |      |
| Milkfish               |       |       |       |       |       |       |       |       |       |      |      |
| Tilapia                |       |       |       |       |       |       | •••   |       |       |      |      |
| Tiger prawn            |       |       |       |       |       |       | •••   |       |       |      |      |
| Mudcrab                |       |       |       |       |       |       |       |       |       |      |      |
|                        |       |       |       |       |       |       |       |       |       |      |      |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                           | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Endeavor                  |       |       |       |       |       |       |       |       |       |       |       |
| prawn                     |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp              |       |       |       |       |       |       |       |       |       |       |       |
| Grouper                   |       |       |       |       |       | •••   | •••   | •••   | •••   |       |       |
| Siganid                   |       |       |       |       |       |       |       |       |       |       |       |
| Spiny lobster             |       |       |       |       |       |       |       |       |       |       |       |
| Others                    | •••   |       |       | •••   |       |       |       |       |       |       |       |
| Marine Cage               | •••   |       |       | •••   |       |       |       |       |       |       |       |
| Milkfish                  |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Tiger prawn               |       |       |       |       |       |       |       |       |       |       |       |
| Mudcrab                   |       |       |       |       |       |       |       |       |       |       |       |
| Endeavor<br>prawn         | •••   |       |       |       |       |       |       |       |       |       |       |
| White shrimp              | •••   | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Grouper                   | •••   | •••   |       | •••   | •••   |       |       |       |       |       | •••   |
| Siganid                   | •••   | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Spiny lobster             | •••   | •••   |       | •••   | •••   |       | •••   | •••   | •••   |       | •••   |
| Others                    | •••   | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Oyster                    | •••   | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Mussel                    |       |       |       |       |       |       |       |       |       |       |       |
| Seaweed                   |       |       |       |       |       |       |       |       |       |       |       |
| Rice Fish                 |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish                  | •••   | •••   |       | •••   |       |       | •••   |       |       |       |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Carp                      |       |       |       |       |       |       |       | •••   | •••   |       |       |
| Catfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Gourami                   | •••   | •••   |       | •••   | •••   |       | •••   |       |       |       |       |
| Mudfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    | •••   | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Small Farm<br>Reservoir   |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish                  |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Carp                      |       |       |       |       |       |       |       |       |       |       |       |
| Catfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Gourami                   |       |       |       |       |       |       |       |       |       |       |       |
| Mudfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    |       |       |       |       |       |       |       |       |       |       |       |
| Benguet                   | 296.5 | 312.2 | 306.2 | 322.1 | 324.9 | 337.3 | 352.7 | 355.8 | 298.0 | 318.7 | 304.1 |
| Brackishwater<br>Fishpond |       |       |       |       |       |       |       |       |       |       |       |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons)

|                        | 2008 | 2009 | 2010 | 2011 | 2012 | 2013     | 2014 | 2015     | 2016     | 2017 | 2018 |
|------------------------|------|------|------|------|------|----------|------|----------|----------|------|------|
| Milkfish               |      |      |      |      |      |          |      |          |          |      |      |
| Tilapia                |      |      |      |      |      |          |      |          |          |      |      |
| Tiger prawn            |      |      | •••  |      | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| Mudcrab                |      | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| Endeavor               |      |      |      |      |      |          |      |          |          |      |      |
| prawn                  |      |      |      |      |      |          |      |          |          |      |      |
| White shrimp           | •••  | •••  | •••  | •••  | •••  | •••      |      |          | •••      |      |      |
| Grouper                | •••  | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      |      |      |
| Siganid                | •••  | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| Others                 | •••  | •••  |      | •••  |      |          | •••  |          | •••      |      |      |
| Brackishwater<br>Pen   | •••  | •••  | •••  | •••  | •••  | •••      | •••  | ***      | •••      | ***  | •••  |
| Milkfish               |      | •••  |      |      |      | •••      |      |          | •••      |      |      |
| Tilapia                |      |      |      |      |      | •••      |      |          | •••      |      |      |
| Grouper                |      |      |      |      |      |          |      |          |          |      |      |
| Siganid                |      |      |      |      |      |          |      |          |          |      |      |
| Others                 |      |      |      |      |      |          |      |          |          |      |      |
| Brackishwater<br>Cage  |      |      |      | •••  |      |          |      |          |          |      |      |
| Milkfish               |      |      |      |      |      |          |      |          |          |      |      |
| Tilapia                |      |      |      |      |      |          |      |          |          |      |      |
| Grouper                |      |      |      |      |      |          |      |          |          |      |      |
| Siganid                |      |      |      |      |      |          |      |          | •••      |      | •••  |
| Others                 |      |      |      |      |      |          |      |          |          |      |      |
| Freshwater<br>Fishpond | 69.3 | 73.1 | 71.9 | 76.0 | 77.3 | 78.4     | 80.5 | 81.4     | 47.4     | 48.2 | 45.4 |
| Milkfish               |      |      |      |      |      |          |      |          |          |      |      |
| Tilapia                | 69.3 | 73.1 | 71.9 | 76.0 | 77.3 | <br>78.4 | 80.5 | <br>81.4 | <br>47.4 | 48.2 | 45.4 |
| Carp                   |      |      |      |      |      |          |      |          |          |      |      |
| Catfish                | •••  | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| Gourami                | •••  | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| Mudfish                | •••  | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| Freshwater             | •••  | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| prawn                  | •••  |      | •••  | •••  | •••  |          |      |          |          |      | •••  |
| Others                 |      |      |      |      |      | •••      |      |          | •••      |      |      |
| Freshwater<br>Pen      | •••  | •••  | •••  | •••  | •••  | •••      | •••  | •••      | •••      | •••  | •••  |
| Milkfish               |      |      |      |      |      |          |      |          |          |      |      |
| Tilapia                |      |      |      |      |      |          |      |          |          |      |      |
| Carp                   |      |      |      |      |      |          |      |          |          |      |      |
| Catfish                |      |      |      |      |      |          |      |          | •••      |      |      |
| Others                 |      |      |      |      |      |          |      |          |          |      |      |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                   | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017   | 2018  |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| Freshwater        | 227.2 | 239.1 | 234.3 | 246.1 | 247.7 | 258.9 | 272.3 | 274.3 | 250.6 | 270.5  | 258.7 |
| Cage              | ,     |       | 200   |       |       | 20012 | _, _, | _,    |       | _, 0,0 |       |
| Milkfish          |       |       |       |       |       |       |       |       |       |        |       |
| Tilapia           | 227.2 | 239.1 | 234.3 | 246.1 | 247.7 | 258.9 | 272.3 | 274.3 | 250.6 | 270.5  | 258.7 |
| Carp              |       | •••   |       | •••   |       |       |       |       |       |        |       |
| Catfish           |       | •••   | •••   | •••   | •••   |       |       |       |       |        | •••   |
| Others            | •••   |       | •••   |       | •••   |       |       |       |       |        | •••   |
| Marine Pen        |       | •••   |       | •••   | •••   |       |       |       |       |        | •••   |
| Milkfish          |       |       |       |       |       |       |       |       |       |        |       |
| Tilapia           |       |       |       |       |       |       |       |       |       |        |       |
| Tiger prawn       |       |       |       |       |       |       |       |       |       |        |       |
| Mudcrab           |       |       |       | •••   |       |       |       |       |       |        |       |
| Endeavor<br>prawn |       |       |       |       |       |       | •••   |       | •••   |        | •••   |
| White shrimp      |       | •••   |       | •••   | •••   |       |       |       |       |        | •••   |
| Grouper           |       | •••   |       | •••   | •••   |       |       |       |       |        |       |
| Siganid           |       | •••   |       | •••   | •••   |       |       |       |       | •••    | •••   |
| Spiny lobster     |       | •••   |       | •••   | •••   |       |       |       |       | •••    | •••   |
| Others            |       |       |       |       |       |       |       |       |       |        |       |
| Marine Cage       |       |       |       |       | •••   |       |       |       |       |        |       |
| Milkfish          |       | •••   |       | •••   | •••   |       |       |       |       |        | •••   |
| Tilapia           |       |       |       |       |       |       |       |       |       |        |       |
| Tiger prawn       |       | •••   |       | •••   | •••   |       |       |       |       | •••    | •••   |
| Mudcrab           |       | •••   |       | •••   | •••   |       |       |       |       | •••    | •••   |
| Endeavor<br>prawn |       |       |       |       |       |       |       |       |       |        |       |
| White shrimp      |       |       |       |       |       |       |       |       |       |        |       |
| Grouper           |       |       |       |       |       |       |       |       |       |        |       |
| Siganid           | •••   |       | •••   | •••   | •••   |       |       |       |       | •••    |       |
| Spiny lobster     |       |       |       |       |       |       | •••   | •••   |       |        |       |
| Others            |       |       |       |       |       |       |       |       |       |        |       |
| Oyster            |       |       |       | •••   | •••   | •••   | •••   |       | •••   |        |       |
| Mussel            |       |       |       |       |       |       |       | •••   |       |        |       |
| Seaweed           |       |       |       |       |       |       | •••   |       |       |        |       |
| Rice Fish         |       |       |       |       |       |       |       |       |       |        |       |
| Milkfish          |       |       |       |       |       |       |       |       |       |        |       |
| Tilapia           |       |       |       |       |       |       |       |       |       |        |       |
| Carp              | •••   |       |       |       |       |       |       |       |       |        |       |
| Catfish           |       |       |       |       |       |       |       |       |       |        |       |
| Gourami           |       |       |       |       |       |       |       |       | •••   |        |       |
| Mudfish           |       |       |       |       |       |       |       |       |       |        |       |
| Others            |       |       |       |       |       |       |       |       |       |        |       |
|                   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••    | •••   |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation **2008 to 2018 (in metric tons)** 

|                           | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Small Farm                |         |         |         |         |         |         |         |         |         |         |         |
| Reservoir                 |         |         |         |         |         |         |         |         |         |         |         |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   |         |         |         |         |         |         |         |         |         |         |         |
| Carp                      |         |         |         |         |         |         |         |         |         |         |         |
| Catfish                   |         |         |         |         |         |         |         |         |         |         |         |
| Gourami                   |         |         |         |         |         |         |         |         |         |         |         |
| Mudfish                   |         |         |         | •••     |         |         |         | •••     |         |         |         |
| Others                    |         |         |         |         |         |         |         |         |         |         |         |
| lfugao                    | 2,001.1 | 2,056.3 | 1,435.1 | 1,461.5 | 1,494.7 | 1,527.6 | 1,557.4 | 1,551.9 | 1,916.8 | 2,091.7 | 2,417.0 |
| Brackishwater<br>Fishpond | •••     | •••     | •••     | •••     | •••     |         | •••     | •••     | •••     | •••     | •••     |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   |         |         |         |         |         |         |         |         |         |         |         |
| Tiger prawn               |         |         |         | •••     |         |         |         | •••     |         |         |         |
| Mudcrab                   |         |         |         |         |         |         |         |         |         |         |         |
| Endeavor<br>prawn         |         |         |         |         |         |         |         |         |         |         |         |
| White shrimp              |         |         |         |         |         |         |         |         |         |         |         |
| Grouper                   |         |         |         |         |         |         |         |         |         |         |         |
| Siganid                   |         |         |         |         |         |         |         |         |         |         |         |
| Others                    |         |         |         |         |         |         |         |         |         |         |         |
| Brackishwater<br>Pen      |         |         |         |         |         |         |         |         |         |         |         |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   |         |         |         |         |         |         |         |         |         |         |         |
| Grouper                   |         |         |         |         |         |         |         |         |         |         |         |
| Siganid                   |         |         |         |         |         |         |         |         |         |         |         |
| Others                    |         |         |         |         |         |         |         |         |         |         |         |
| Brackishwater<br>Cage     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   |         |         |         |         |         |         |         |         |         |         |         |
| Grouper                   |         |         |         | •••     |         | •••     |         | •••     |         |         |         |
| Siganid                   |         |         |         |         |         |         |         |         |         |         |         |
| Others                    |         |         |         |         |         |         |         |         |         |         |         |
| Freshwater<br>Fishpond    | 700.7   | 837.6   | 697.6   | 799.4   | 829.5   | 853.2   | 873.4   | 893.4   | 1,059.4 | 1,170.4 | 1,258.3 |
| Milkfish                  |         |         |         |         |         |         |         |         |         |         |         |
| Tilapia                   | 700.7   | 837.6   | 697.6   | 799.4   | 829.5   | 853.2   | 873.4   | 893.4   | 1,059.4 | 1,170.4 | 1,258.3 |
| Carp                      |         |         |         |         |         |         |         |         |         |         |         |
| Catfish                   | •••     | •••     | •••     |         | •••     | •••     | •••     |         | •••     | •••     | •••     |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                     | 2008    | 2009    | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018    |
|---------------------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| Gourami             |         |         | •••   |       |       |       |       | •••   | •••   |       |         |
| Mudfish             |         |         |       |       |       |       |       |       |       |       |         |
| Freshwater<br>prawn |         |         |       |       |       |       |       |       |       |       |         |
| Others              |         |         | •••   |       |       |       |       | •••   | •••   |       |         |
| Freshwater<br>Pen   |         |         |       |       |       |       |       |       | •••   | •••   |         |
| Milkfish            | •••     |         | •••   | •••   |       | •••   | •••   | •••   | •••   | •••   | •••     |
| Tilapia             |         |         | •••   |       |       |       |       | •••   | •••   |       |         |
| Carp                |         |         |       |       |       |       |       |       |       |       |         |
| Catfish             |         |         |       |       |       |       |       |       |       |       |         |
| Others              |         |         |       |       |       |       |       |       |       |       |         |
| Freshwater<br>Cage  | 1,300.4 | 1,218.6 | 737.5 | 662.2 | 665.2 | 674.5 | 684.0 | 658.5 | 857.4 | 921.3 | 1,158.8 |
| Milkfish            |         |         |       |       |       |       |       |       |       |       |         |
| Tilapia             | 1,300.4 | 1,218.6 | 737.5 | 662.2 | 665.2 | 674.5 | 684.0 | 658.5 | 857.4 | 921.3 | 1,158.8 |
| Carp                |         |         |       |       |       |       |       |       |       |       |         |
| Catfish             |         |         |       |       |       |       |       |       |       |       |         |
| Others              |         |         |       |       |       |       |       |       |       |       |         |
| Marine Pen          |         |         |       |       |       |       |       |       |       |       |         |
| Milkfish            |         |         |       |       |       |       |       |       |       |       |         |
| Tilapia             |         |         |       |       |       |       |       |       |       |       |         |
| Tiger prawn         |         |         |       |       |       |       |       |       |       |       |         |
| Mudcrab             |         |         |       |       |       |       |       |       |       |       |         |
| Endeavor<br>prawn   |         |         |       |       |       | •••   | •••   |       | •••   | •••   |         |
| White shrimp        |         |         |       |       |       |       |       |       |       |       |         |
| Grouper             |         |         |       |       |       | •••   |       | •••   |       |       |         |
| Siganid             |         |         |       |       |       |       |       |       |       |       |         |
| Spiny lobster       | •••     |         | •••   |       |       | •••   |       |       | •••   |       |         |
| Others              |         |         |       |       |       |       |       |       |       |       |         |
| Marine Cage         |         |         |       |       |       |       |       |       |       |       |         |
| Milkfish            |         |         |       |       |       |       |       |       |       |       |         |
| Tilapia             |         |         |       |       |       |       |       |       |       |       |         |
| Tiger prawn         |         |         |       |       |       |       |       |       |       |       |         |
| Mudcrab             |         |         |       |       |       |       |       |       |       |       |         |
| Endeavor<br>prawn   |         |         |       |       |       |       |       |       |       |       |         |
| White shrimp        |         |         |       |       |       |       |       |       |       |       |         |
| Grouper             |         |         |       |       |       |       |       |       |       |       |         |
| Siganid             |         |         |       |       |       |       |       |       |       |       |         |
| Spiny lobster       |         |         |       |       |       |       |       |       |       |       |         |
| Spirity lobster     | •••     | •••     | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••     |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                           | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Others                    |       |       |       |       |       |       |       |       |       |       |       |
| Oyster                    |       |       |       |       |       |       |       |       |       |       |       |
| Mussel                    |       |       |       |       |       |       |       |       |       |       |       |
| Seaweed                   |       |       |       |       |       |       |       |       |       |       |       |
| Rice Fish                 |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish                  |       |       |       | •••   |       | •••   |       |       |       | •••   |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Carp                      | •••   | •••   |       | •••   |       |       | •••   |       |       | •••   |       |
| Catfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Gourami                   |       |       |       |       |       |       |       |       |       |       |       |
| Mudfish                   | •••   | •••   |       | •••   | •••   |       |       |       |       |       | •••   |
| Others                    |       |       |       |       |       |       |       |       |       |       |       |
| Small Farm<br>Reservoir   |       | •••   | •••   | •••   | •••   |       |       |       |       |       | •••   |
| Milkfish                  |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Carp                      | •••   |       |       |       |       |       |       |       |       |       |       |
| Catfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Gourami                   | •••   |       |       |       |       |       |       |       |       |       |       |
| Mudfish                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    | •••   |       |       | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       |
| Kalinga                   | 254.6 | 249.4 | 240.8 | 249.0 | 240.7 | 234.7 | 235.4 | 182.8 | 167.1 | 124.5 | 117.9 |
| Brackishwater<br>Fishpond | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |
| Milkfish                  |       |       |       | •••   |       |       |       |       |       |       |       |
| Tilapia                   | •••   | •••   |       | •••   | •••   | •••   |       |       |       |       |       |
| Tiger prawn               |       |       |       |       |       |       |       |       |       |       |       |
| Mudcrab                   | •••   | •••   |       | •••   |       |       |       |       |       |       |       |
| Endeavor<br>prawn         |       |       |       |       |       |       |       | •••   |       |       |       |
| White shrimp              | •••   |       |       | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       |
| Grouper                   | •••   | •••   |       | •••   | •••   |       |       |       |       |       | •••   |
| Siganid                   | •••   | •••   |       | •••   | •••   | •••   |       |       |       |       |       |
| Others                    |       |       |       |       |       |       |       |       |       |       |       |
| Brackishwater<br>Pen      |       |       | •••   |       |       |       | •••   | •••   | •••   | •••   |       |
| Milkfish                  |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                   |       |       |       |       |       |       |       |       |       |       |       |
| Grouper                   |       |       |       |       |       |       |       |       |       |       |       |
| Siganid                   |       |       |       |       |       |       |       |       |       |       |       |
| Others                    |       |       |       |       |       |       |       |       |       |       |       |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                        | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Brackishwater<br>Cage  |       | •••   | •••   |       | •••   |       |       |       |       |       |       |
| Milkfish               |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                |       |       |       |       |       |       |       |       |       |       |       |
| Grouper                | •••   |       |       |       |       |       |       |       |       |       |       |
| Siganid                |       |       |       |       |       |       |       |       |       |       |       |
| Others                 |       |       | •••   | •••   |       |       |       |       |       |       |       |
| Freshwater<br>Fishpond | 254.5 | 249.4 | 240.7 | 248.9 | 240.7 | 234.6 | 235.4 | 182.8 | 167.1 | 124.5 | 117.9 |
| Milkfish               |       |       |       |       |       | •••   | •••   | •••   | •••   | •••   |       |
| Tilapia                | 254.2 | 247.8 | 238.6 | 247.3 | 239.7 | 233.2 | 234.5 | 182.1 | 167.1 | 124.3 | 117.8 |
| Carp                   | 0.3   | 0.3   | 0.3   | 0.2   | 0.2   | 0.2   | 0.1   | •••   | •••   |       | •••   |
| Catfish                |       |       |       |       | 0.3   | 0.9   | 0.9   | 0.6   |       | 0.1   | 0.1   |
| Gourami                |       |       |       |       |       |       | •••   |       |       |       |       |
| Mudfish                |       |       | 0.1   |       |       |       |       | 0.1   | 0.0   |       |       |
| Freshwater<br>prawn    | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       |
| Others                 |       | 1.3   | 1.7   | 1.4   | 0.4   | 0.3   |       |       |       | 0.1   |       |
| Freshwater<br>Pen      |       | •••   |       |       |       |       |       |       |       |       |       |
| Milkfish               |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                |       |       |       |       |       | •••   | •••   | •••   | •••   |       |       |
| Carp                   | •••   |       | •••   |       |       |       | •••   |       |       |       |       |
| Catfish                |       |       |       |       |       |       | •••   |       |       |       |       |
| Others                 | •••   |       | •••   | •••   |       |       | •••   |       |       |       |       |
| Freshwater<br>Cage     | 0.1   | 0.0   | 0.1   | 0.1   | 0.0   | 0.1   | •••   |       |       |       |       |
| Milkfish               |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                | 0.1   | 0.0   | 0.1   | 0.1   | 0.0   | 0.1   |       |       |       |       |       |
| Carp                   |       |       |       |       |       |       |       |       |       |       |       |
| Catfish                |       |       | •••   | •••   |       |       |       |       |       |       |       |
| Others                 |       |       |       |       |       |       |       |       |       |       |       |
| Marine Pen             |       |       |       |       |       | •••   | •••   | •••   | •••   |       | •••   |
| Milkfish               |       |       |       |       |       | •••   | •••   |       |       |       |       |
| Tilapia                |       |       |       |       |       | •••   | •••   | •••   | •••   |       |       |
| Tiger prawn            | •••   |       | •••   | •••   |       | •••   | •••   | •••   |       |       |       |
| Mudcrab                | •••   |       |       |       |       | •••   | •••   |       | •••   |       | •••   |
| Endeavor<br>prawn      |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp           |       |       | •••   |       |       |       | •••   |       |       |       |       |
| Grouper                |       |       |       |       |       | ***   | ***   |       | ***   |       |       |
| Siganid                |       |       |       |       |       |       |       |       |       |       |       |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons)

|                           | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Spiny lobster             |      |      |      |      |      |      |      |      |      |      |      |
| Others                    |      |      |      |      |      |      |      |      |      |      |      |
| Marine cage               |      | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  |
| Milkfish                  |      | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  |
| Tilapia                   | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  |
|                           | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  |
| Tiger prawn  Mudcrab      | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  |
|                           | •••  | •••  | •••  | •••  | •••  |      | •••  | •••  | •••  | •••  | •••  |
| Endeavor<br>prawn         | •••  |      |      |      |      |      |      |      |      |      |      |
| White shrimp              | •••  |      |      |      |      | •••  |      | •••  |      | •••  |      |
| Grouper                   | •••  |      |      |      | •••  |      |      | •••  |      |      |      |
| iganid                    |      |      |      |      |      |      |      |      |      |      |      |
| Spiny lobster             |      |      |      |      |      |      |      | •••  |      |      |      |
| Others                    | •••  | •••  | •••  |      | •••  | •••  |      | •••  | •••  | •••  | •••  |
| Oyster                    | •••  |      |      |      | •••  | •••  |      | •••  |      | •••  |      |
| Mussel                    |      |      |      |      |      |      | •••  | •••  |      |      |      |
| Seaweed                   |      |      |      |      |      |      | •••  |      |      |      |      |
| Rice Fish                 |      |      |      |      |      |      |      |      |      |      |      |
| Milkfish                  |      | •••  | •••  |      |      | •••  | •••  | •••  |      | •••  |      |
| Tilapia                   |      |      |      |      |      | •••  |      | •••  |      | •••  |      |
| Carp                      |      |      |      |      |      |      |      |      |      |      |      |
| Catfish                   | •••  |      |      |      |      |      | •••  | •••  |      |      |      |
| Gourami                   |      |      |      |      |      |      |      |      |      |      |      |
| Mudfish                   |      |      |      |      |      |      |      |      |      |      |      |
| Others                    |      |      |      |      |      |      |      |      |      |      |      |
| Small Farm<br>Reservoir   |      |      |      |      |      |      |      |      |      |      |      |
| Milkfish                  |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                   |      |      |      |      |      |      |      |      |      |      |      |
| Carp                      |      |      |      |      |      |      |      |      |      |      |      |
| Catfish                   |      |      |      |      |      |      |      |      |      |      |      |
| Gourami                   |      |      |      |      |      |      |      |      |      |      |      |
| Mudfish                   |      |      |      |      |      |      |      |      |      |      |      |
| Others                    |      | •••  | •••  |      |      | •••  | •••  | •••  |      |      |      |
| Mountain<br>Province      | 15.3 | 16.0 | 14.2 | 18.0 | 17.0 | 17.1 | 16.7 | 14.8 | 12.7 | 11.3 | 10.0 |
| Brackishwater<br>Fishpond |      | •••  | •••  | •••  | •••  | •••  | ***  | •••  | •••  | •••  | •••  |
| Milkfish                  |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                   |      |      |      |      |      |      |      |      |      |      |      |
| Tiger prawn               |      |      |      |      |      |      |      |      |      |      |      |
| Mudcrab                   |      |      |      |      |      |      |      |      |      |      |      |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                        | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Endeavor<br>prawn      |      |      |      |      |      |      |      |      |      |      |      |
| White shrimp           |      |      |      |      |      |      |      |      |      |      |      |
| Grouper                |      |      |      |      |      |      |      |      |      |      |      |
| Siganid                |      |      |      |      |      |      |      |      |      |      |      |
| Others                 |      |      |      |      |      |      |      |      |      |      |      |
| Brackishwater<br>Pen   |      |      |      |      |      |      |      |      | •••  |      |      |
| Milkfish               |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                |      |      |      |      |      |      |      |      |      |      |      |
| Grouper                |      |      |      |      |      |      |      |      |      |      |      |
| Siganid                |      |      | •••  |      |      |      |      | •••  |      |      |      |
| Others                 |      |      |      |      |      |      |      |      |      |      |      |
| Brackishwater<br>Cage  | •••  | •••  | •••  |      | •••  | •••  |      | •••  | •••  |      |      |
| Milkfish               |      |      | •••  |      | •••  |      |      | •••  |      |      | •••  |
| Tilapia                |      |      | •••  |      | •••  |      |      |      |      |      | •••  |
| Grouper                |      |      |      |      |      |      |      |      |      |      |      |
| Siganid                |      |      |      |      |      |      |      |      |      |      |      |
| Others                 |      |      |      |      |      |      |      |      |      |      |      |
| Freshwater<br>Fishpond | 15.2 | 16.0 | 14.2 | 15.3 | 14.3 | 14.2 | 13.6 | 11.6 | 11.0 | 9.7  | 8.7  |
| Milkfish               |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                | 15.2 | 16.0 | 14.2 | 14.2 | 14.1 | 14.0 | 13.5 | 11.5 | 10.9 | 9.5  | 8.5  |
| Carp                   |      |      |      |      | 0.1  | 0.2  | 0.2  | 0.1  | 0.1  | 0.1  | 0.2  |
| Catfish                |      |      |      |      | 0.1  | 0.0  | 0.0  |      |      |      |      |
| Gourami                |      |      |      |      |      |      |      |      |      |      |      |
| Mudfish                | •••  | •••  | •••  |      | •••  | •••  | •••  | •••  | •••  | •••  | •••  |
| Freshwater<br>prawn    |      |      |      |      |      |      |      |      |      |      |      |
| Others                 |      |      |      | 1.2  | 0.1  | -    |      |      |      | 0.0  |      |
| Freshwater<br>Pen      |      | •••  | •••  | •••  | •••  |      |      |      | •••  |      | •••  |
| Milkfish               |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                |      |      |      |      |      |      |      |      |      |      |      |
| Carp                   |      |      |      |      |      |      |      |      |      |      |      |
| Catfish                |      |      |      |      |      |      |      |      |      |      |      |
| Others                 |      |      |      |      |      |      |      |      |      |      |      |
| Freshwater<br>Cage     | 0.0  | 0.0  | 0.0  | 2.7  | 2.7  | 2.9  | 3.1  | 3.2  | 1.7  | 1.6  | 1.3  |
| Milkfish               |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                | 0.0  | 0.0  | 0.0  | 2.7  | 2.7  | 2.9  | 3.1  | 3.2  | 1.7  | 1.6  | 1.3  |
|                        |      |      |      |      |      |      |      |      |      |      |      |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                         | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|-------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Carp                    |      |      |      |      |      |      |      |      | 0.0  |      |      |
| Catfish                 |      |      |      |      |      |      |      |      |      |      |      |
| Others                  |      |      |      |      |      |      |      |      |      |      |      |
| Marine Pen              |      |      |      | •••  |      |      |      |      |      |      |      |
| Milkfish                |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                 |      |      |      |      |      |      |      |      |      |      |      |
| Tiger prawn             |      |      |      |      |      |      |      |      |      |      |      |
| Mudcrab                 |      | •••  |      |      |      |      |      |      |      |      |      |
| Endeavor<br>prawn       |      |      |      |      |      |      |      |      |      |      |      |
| White shrimp            |      |      |      | •••  |      |      |      |      |      |      |      |
| Grouper                 |      |      |      |      |      |      |      |      |      |      |      |
| Siganid                 |      | •••  |      |      |      |      |      |      |      |      |      |
| Spiny lobster           |      |      |      |      |      |      |      |      |      |      |      |
| Others                  |      | •••  | •••  | •••  |      |      | •••  |      | •••  | •••  |      |
| Marine Cage             |      | •••  | •••  | •••  |      |      | •••  |      | •••  | •••  |      |
| Milkfish                |      |      |      |      |      |      |      |      | •••  |      |      |
| Tilapia                 |      | •••  |      |      |      |      |      |      |      |      |      |
| Tiger prawn             |      |      |      |      |      |      |      |      | •••  |      |      |
| Mudcrab                 | •••  |      | •••  |      |      |      |      |      | •••  |      |      |
| Endeavor<br>prawn       | •••  |      | •••  |      |      | •••  | •••  | •••  | •••  | •••  | •••  |
| White shrimp            | •••  |      | •••  |      |      |      |      | •••  | •••  | •••  |      |
| Grouper                 |      | •••  | •••  | •••  |      |      | •••  |      | •••  | •••  |      |
| Siganid                 | •••  |      | •••  |      |      |      |      | •••  | •••  | •••  |      |
| Spiny lobster           |      |      |      |      |      |      |      |      |      |      |      |
| Others                  | •••  | •••  | •••  |      |      |      |      |      | •••  |      |      |
| Oyster                  |      |      |      |      |      |      |      |      |      |      |      |
| Mussel                  | •••  | •••  |      |      |      |      |      |      | •••  |      |      |
| Seaweed                 | •••  |      |      |      |      |      |      |      | •••  |      |      |
| Rice Fish               |      |      |      |      |      |      |      |      |      |      |      |
| Milkfish                |      |      |      |      |      |      |      |      |      |      |      |
| Tilapia                 |      | •••  |      |      |      |      |      |      |      |      |      |
| Carp                    |      |      |      |      |      |      |      |      |      |      |      |
| Catfish                 |      |      |      |      |      |      |      |      |      |      |      |
| Gourami                 |      |      |      |      |      |      |      |      |      |      |      |
| Mudfish                 |      |      |      |      |      |      |      |      |      |      |      |
| Others                  |      |      |      |      |      |      |      |      |      |      |      |
| Small Farm<br>Reservoir |      |      |      |      |      |      |      |      |      |      |      |
| Milkfish                |      |      |      |      |      |      |      |      |      |      |      |

Table 2.6 Aquaculture: Volume of Production by Type, Environment, Species and Geolocation 2008 to 2018 (in metric tons)

|         | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|---------|------|------|------|------|------|------|------|------|------|------|------|
| Tilapia | •••  |      |      |      |      |      |      | •••  | •••  |      |      |
| Carp    |      |      |      |      |      |      |      |      |      |      |      |
| Catfish |      |      |      |      |      |      |      |      |      |      |      |
| Gourami |      |      |      |      |      |      |      |      |      |      |      |
| Mudfish |      |      |      |      |      |      |      |      |      |      |      |
| Others  |      |      |      |      |      | •••  |      |      |      | •••  |      |

Source: Philippine Statistics Authority

Table 2.7 Inland Municipal Fisheries: Volume of Production by Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                               | 2008  | 2009  | 2010  | 2011  | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|-------------------------------|-------|-------|-------|-------|---------|---------|---------|---------|---------|---------|---------|
| Cordillera Administrative     |       |       |       |       |         |         |         |         |         |         |         |
| Region                        | 934.4 | 940.2 | 915.5 | 983.4 | 1,035.7 | 1,114.5 | 1,157.1 | 1,173.8 | 1,238.5 | 1,151.1 | 1,111.2 |
| Fish                          | 837.7 | 840.7 | 813.3 | 880.5 | 926.4   | 982.8   | 1,016.6 | 1,029.6 | 1,105.2 | 1,016.3 | 881.8   |
| Carp                          | 106.3 | 106.9 | 103.7 | 108.0 | 121.6   | 133.8   | 133.1   | 135.5   | 128.1   | 115.3   | 118.8   |
| Catfish (Hito)                | 25.0  | 25.2  | 26.4  | 26.7  | 29.0    | 39.8    | 38.1    | 37.2    | 37.0    | 33.0    | 31.8    |
| Catfish (Kanduli)             | 13.0  | 10.2  | 9.5   | 8.8   | 8.7     | 9.7     | 10.4    | 2.4     | 1.8     | 3.6     | 10.2    |
| Climbing perch<br>(Martiniko) |       |       |       |       |         |         |         |         |         | 0.6     | 1.0     |
| Eel (Igat)                    | 45.5  | 46.8  | 46.6  | 50.6  | 54.0    | 57.1    | 57.4    | 57.7    | 44.7    | 25.6    | 24.4    |
| Freshwater goby (Biya)        | 108.2 | 106.7 | 101.1 | 122.4 | 140.2   | 143.7   | 143.4   | 152.2   | 141.2   | 133.6   | 120.1   |
| Gourami                       | 5.4   | 4.5   | 3.6   | 3.1   | 2.8     | 2.6     | 1.9     | 1.4     | 0.8     | 4.1     | 2.7     |
| Milkfish (Bangus)             |       | 1.4   | •••   |       |         |         |         |         |         |         |         |
| Mudfish (Dalag)               | 32.3  | 32.1  | 35.1  | 35.5  | 37.5    | 47.7    | 47.1    | 47.0    | 44.5    | 48.5    | 35.0    |
| Mullet (Kapak)                |       |       |       |       |         |         |         |         |         |         |         |
| Mullet (Ludong)               |       |       | •••   |       |         |         | •••     | •••     | 0.5     | 0.6     |         |
| Sardines (Tawilis)            |       |       |       |       |         |         |         |         |         |         |         |
| Silver perch (Ayungin)        | 51.4  | 49.6  | 47.3  | 65.4  | 71.6    | 72.3    | 71.5    | 68.9    | 43.6    | 45.0    | 33.9    |
| Spade fish (Kitang)           |       |       | •••   |       |         |         |         |         |         |         |         |
| Starry goby (Dulong)          |       |       | •••   |       |         |         |         |         |         |         |         |
| Tarpon (Buan Buan)            |       |       | •••   |       |         |         |         |         |         |         |         |
| Tilapia                       | 447.9 | 454.6 | 438.2 | 460.0 | 461.1   | 476.0   | 513.8   | 519.1   | 577.8   | 510.1   | 432.1   |
| Big head carp                 | 1.5   | 2.3   | 1.6   | 0.1   | •••     |         |         |         | 0.9     | 4.2     |         |
| Other fishes                  | 1.2   | 0.4   | 0.2   |       |         |         |         | 8.3     | 84.3    | 92.1    | 71.6    |
| Crustaceans                   | 59.8  | 57.7  | 55.8  | 55.9  | 62.8    | 67.0    | 71.4    | 76.6    | 72.0    | 65.8    | 54.9    |
| Blue crab (Alimasag)          |       |       |       |       |         |         |         |         |         |         |         |
| Endeavor prawn (Suahe)        |       |       |       |       |         |         |         |         |         |         |         |
| Freshwater crab<br>(Talangka) | 0.4   | 0.3   | 1.2   | 1.3   | 1.8     | 5.3     | 5.5     | 4.7     | 4.5     | 5.2     | 4.2     |
| Freshwater shrimp<br>(Hipon)  | 59.4  | 56.8  | 54.0  | 54.0  | 60.0    | 61.7    | 65.9    | 71.9    | 67.4    | 60.6    | 50.7    |
| Lobster (Ulang)               |       |       |       |       |         |         |         |         |         |         |         |
| Mud crab (Alimango)           |       | 0.6   | 0.6   | 0.6   | 1.0     |         |         |         |         |         |         |
| Tiger prawn (Sugpo)           |       |       |       |       |         |         |         |         |         |         |         |
| White shrimp (Hipong<br>Puti) |       |       |       |       |         |         |         |         |         |         |         |
| Other crustaceans             |       |       |       |       |         |         |         | •••     |         | •••     |         |
| Molluscs                      | 36.9  | 41.8  | 46.5  | 47.1  | 46.5    | 64.7    | 69.1    | 67.7    | 61.3    | 69.1    | 174.6   |
| Clams (Kabibi)                |       |       |       |       |         |         |         |         |         |         | 1.7     |
| Freshwater clams (Tulya)      | 23.9  | 25.6  | 29.7  | 29.6  | 28.2    | 37.8    | 39.9    | 40.8    | 35.8    | 35.7    | 68.8    |
| Oyster (Talaba)               |       |       |       |       |         |         |         |         |         |         |         |
| Shell (Kuhol)                 |       | 0.4   |       |       |         |         |         | •••     |         |         | 11.0    |
| Snail (Suso)                  | 12.9  | 15.8  | 16.8  | 17.5  | 18.4    | 26.9    | 29.2    | 26.9    | 25.6    | 30.1    | 59.3    |
| Other molluscs                |       |       |       |       |         |         |         | •••     |         | 3.2     | 33.8    |
|                               |       |       |       |       |         |         |         |         |         |         |         |

Table 2.7 Inland Municipal Fisheries: Volume of Production by Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                               | 2008  | 2000  | 2010  | 2011  | 2012  | 2012  | 2014  | 2015  | 2016  | 2017  | 2018  |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ••                            |       | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  |       |
| Abra                          | 276.5 | 278.7 | 288.1 | 291.1 | 306.9 | 313.4 | 322.5 | 329.2 | 320.2 | 245.4 | 260.7 |
| Fish                          | 233.6 | 237.4 | 242.4 | 246.7 | 260.6 | 265.5 | 272.0 | 274.0 | 273.4 | 209.0 | 221.2 |
| Carp                          | 45.4  | 43.1  | 42.4  | 42.3  | 53.4  | 53.5  | 50.6  | 51.7  | 34.3  | 19.5  | 16.4  |
| Catfish (Hito)                | 3.8   | 2.3   | 2.9   | 2.9   | 3.5   | 7.0   | 4.2   | 2.4   | 1.4   | 2.7   | 3.1   |
| Catfish (Kanduli)             |       |       | •••   | •••   | •••   | •••   | •••   |       | •••   |       | •••   |
| Climbing perch<br>(Martiniko) |       |       |       |       |       |       |       |       |       |       |       |
| Eel (Igat)                    | 14.7  | 14.6  | 12.4  | 12.4  | 13.7  | 14.0  | 10.5  | 9.5   | 9.3   | 5.4   | 5.0   |
| Freshwater goby (Biya)        | 30.4  | 31.5  | 31.6  | 35.5  | 47.4  | 46.8  | 43.6  | 54.2  | 57.3  | 58.1  | 63.9  |
| Gourami                       |       |       |       |       |       |       |       |       |       |       |       |
| Milkfish (Bangus)             |       |       |       |       |       |       |       |       |       |       |       |
| Mudfish (Dalag)               | 4.2   | 3.6   | 3.7   | 3.8   | 4.3   | 7.7   | 5.7   | 4.0   | 0.8   | 3.3   | 3.0   |
| Mullet (Kapak)                |       |       |       |       |       |       | •••   |       | •••   |       | •••   |
| Mullet (Ludong)               |       |       |       |       |       |       |       |       | •••   |       |       |
| Sardines (Tawilis)            |       |       |       |       |       |       |       |       |       |       |       |
| Silver perch (Ayungin)        |       |       |       |       |       |       |       |       |       |       |       |
| Spade fish (Kitang)           |       |       |       |       |       | •••   |       |       |       |       |       |
| Starry goby (Dulong)          |       |       |       |       |       |       |       |       |       |       |       |
| Tarpon (Buan Buan)            |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                       | 135.0 | 142.3 | 149.5 | 149.8 | 138.4 | 136.4 | 157.4 | 152.3 | 170.3 | 120.0 | 129.7 |
| Big head carp                 |       |       |       |       |       |       |       |       |       |       |       |
| Other fishes                  |       |       |       |       |       |       | •••   |       |       |       |       |
| Crustaceans                   | 32.9  | 32.2  | 32.7  | 32.4  | 37.4  | 36.0  | 38.6  | 44.1  | 36.1  | 28.0  | 25.0  |
| Blue crab (Alimasag)          |       |       |       |       |       |       |       |       | •••   |       |       |
| Endeavor prawn (Suahe)        |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater crab<br>(Talangka) |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater shrimp<br>(Hipon)  | 32.9  | 32.2  | 32.7  | 32.4  | 37.4  | 36.0  | 38.6  | 44.1  | 36.1  | 28.0  | 25.0  |
| Lobster (Ulang)               |       |       |       |       |       |       |       |       |       |       |       |
| Mud crab (Alimango)           |       |       | •••   | •••   | •••   |       | •••   | •••   | •••   |       | •••   |
| Tiger prawn (Sugpo)           |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp (Hipong<br>Puti) |       |       | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       |       |
| Other crustaceans             |       |       |       |       |       |       |       |       |       |       |       |
| Molluscs                      | 10.0  | 9.2   | 13.1  | 12.0  | 8.9   | 11.9  | 11.9  | 11.1  | 10.8  | 8.4   | 14.5  |
| Clams (Kabibi)                |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater clams (Tulya)      | 10.0  | 9.2   | 13.1  | 12.0  | 8.9   | 11.9  | 11.9  | 11.1  | 10.8  | 8.4   | 14.5  |
| Oyster (Talaba)               |       |       |       |       |       |       |       |       |       |       |       |
| Shell (Kuhol)                 | •••   |       |       |       |       |       |       |       |       |       |       |
| Snail (Suso)                  |       |       |       |       |       |       |       |       |       |       |       |
| Other molluscs                |       | •••   |       |       |       |       |       | •••   |       |       | •••   |
| Other monases                 | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |

Table 2.7 Inland Municipal Fisheries: Volume of Production by Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                               | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Apayao                        | 110.4 | 116.4 | 111.0 | 120.5 | 131.9 | 185.4 | 195.6 | 197.4 | 188.1 | 155.6 | 214.4 |
| Fish                          | 103.4 | 110.4 | 103.9 | 113.1 | 122.7 | 158.6 | 167.7 | 172.0 | 164.8 | 132.7 | 123.8 |
|                               | 11.6  | 13.0  | 11.7  | 13.4  | 13.9  | 23.6  | 23.9  | 24.1  | 23.8  | 24.7  | 28.2  |
| Carp Catfish (Hito)           |       |       | 5.8   |       |       | 13.3  |       |       | 14.3  |       | 9.6   |
| Catfish (Kanduli)             | 5.5   | 5.1   |       | 5.7   | 6.7   |       | 13.6  | 13.9  |       | 7.3   | 0.2   |
|                               | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       | 0.2   |
| Climbing perch<br>(Martiniko) |       |       |       |       |       |       |       |       | •••   | 0.6   | 1.0   |
| Eel (Igat)                    | 20.1  | 22.4  | 24.3  | 28.1  | 29.5  | 31.2  | 32.7  | 33.5  | 20.2  | 10.5  | 7.9   |
| Freshwater goby (Biya)        | 13.3  | 12.0  | 10.9  | 11.1  | 11.6  | 14.4  | 15.0  | 15.0  | 15.8  | 2.2   | 3.4   |
| Gourami                       |       |       |       |       |       | 0.2   | 0.5   | 0.2   | 8.0   | 4.1   | 2.7   |
| Milkfish (Bangus)             |       |       |       |       |       |       |       |       |       |       |       |
| Mudfish (Dalag)               | 7.3   | 6.7   | 7.5   | 7.3   | 8.3   | 15.0  | 15.7  | 16.1  | 16.7  | 14.1  | 10.8  |
| Mullet (Kapak)                |       |       |       |       |       |       |       | •••   | •••   |       | •••   |
| Mullet (Ludong)               |       |       |       |       |       |       |       |       | 0.5   | 0.6   |       |
| Sardines (Tawilis)            |       |       |       |       |       |       |       |       |       |       |       |
| Silver perch (Ayungin)        |       |       |       |       |       |       |       |       |       |       |       |
| Spade fish (Kitang)           |       |       |       |       |       |       |       |       |       |       |       |
| Starry goby (Dulong)          |       |       |       |       |       |       |       | •••   | •••   |       |       |
| Tarpon (Buan Buan)            |       |       |       |       | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Tilapia                       | 45.5  | 51.0  | 43.7  | 47.6  | 52.8  | 60.9  | 66.5  | 69.3  | 70.0  | 56.7  | 47.9  |
| Big head carp                 |       |       |       |       | •••   |       |       | •••   | 0.9   | 4.2   | •••   |
| Other fishes                  |       |       |       |       |       |       |       |       | 1.9   | 7.8   | 12.3  |
| Crustaceans                   | 4.1   | 3.0   | 4.3   | 4.4   | 5.5   | 10.2  | 10.5  | 9.8   | 9.9   | 8.0   | 7.7   |
| Blue crab (Alimasag)          |       |       |       |       |       |       |       |       |       |       |       |
| Endeavor prawn (Suahe)        |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater crab<br>(Talangka) | 0.4   | 0.3   | 1.2   | 1.3   | 1.8   | 5.3   | 5.5   | 4.7   | 4.5   | 5.2   | 4.2   |
| Freshwater shrimp<br>(Hipon)  | 3.7   | 2.1   | 2.5   | 2.6   | 2.7   | 4.9   | 5.0   | 5.1   | 5.4   | 2.8   | 3.5   |
| Lobster (Ulang)               |       |       |       |       |       |       |       |       |       |       |       |
| Mud crab (Alimango)           |       | 0.6   | 0.6   | 0.6   | 1.0   |       |       |       |       |       |       |
| Tiger prawn (Sugpo)           |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp (Hipong<br>Puti) |       |       |       |       |       |       |       |       |       |       |       |
| Other crustaceans             |       |       |       |       |       |       |       |       |       |       |       |
| Molluscs                      | 2.9   | 3.2   | 2.8   | 2.9   | 3.7   | 16.6  | 17.5  | 15.6  | 13.4  | 14.9  | 82.9  |
| Clams (Kabibi)                |       |       |       |       |       |       |       |       |       |       | 1.7   |
| Freshwater clams (Tulya)      | •••   | •••   |       |       | 0.6   | 5.7   | 6.0   | 5.4   | 5.0   | 5.4   | 25.9  |
| Oyster (Talaba)               | •••   |       |       |       |       |       |       |       |       |       |       |
| Shell (Kuhol)                 |       | 0.4   |       |       |       |       |       | •••   | •••   |       | 11.0  |
| Snail (Suso)                  | 2.9   | 2.7   | 2.8   | 2.9   | 3.1   | 10.9  | 11.5  | 10.2  | 8.4   | 6.3   | 10.5  |
| Other molluscs                |       |       |       |       |       |       |       |       |       | 3.2   | 33.8  |
|                               |       |       |       |       |       |       |       |       |       |       |       |

Table 2.7 Inland Municipal Fisheries: Volume of Production by Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                               | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017  | 2018  |
|-------------------------------|------|------|------|------|------|------|------|------|------|-------|-------|
| Benguet                       | 78.6 | 84.2 | 82.9 | 85.6 | 87.5 | 89.6 | 93.1 | 98.4 | 95.8 | 105.4 | 105.1 |
| Fish                          | 74.3 | 79.1 | 78.1 | 80.8 | 82.0 | 83.5 | 86.6 | 91.6 | 93.6 | 105.3 | 105.1 |
| Carp                          | 19.7 | 21.8 | 19.8 | 20.3 | 21.1 | 21.3 | 22.0 | 22.8 | 23.6 | 25.2  | 22.6  |
| Catfish (Hito)                |      |      | •••  | •••  | •••  |      | •••  |      |      |       |       |
| Catfish (Kanduli)             |      |      |      |      |      |      |      |      |      |       |       |
| Climbing perch<br>(Martiniko) |      |      |      |      |      |      |      |      |      |       | ***   |
| Eel (Igat)                    | 1.3  | 0.8  | 0.4  | 0.3  | 0.3  | 0.5  | 0.7  | 0.7  | 0.7  | 0.4   | 1.2   |
| Freshwater goby (Biya)        | 3.7  | 5.0  | 4.9  | 4.6  | 4.4  | 4.4  | 4.5  | 4.5  | 4.6  | 7.9   | 7.8   |
| Gourami                       |      |      | •••  | •••  | •••  |      | •••  | •••  |      | •••   |       |
| Milkfish (Bangus)             |      |      | •••  | •••  | •••  |      | •••  |      |      |       |       |
| Mudfish (Dalag)               | 8.0  | 0.2  | 0.9  | 0.9  | 8.0  | 0.9  | 1.1  | 1.1  | 0.6  | 1.6   | 1.8   |
| Mullet (Kapak)                |      |      | •••  | •••  | •••  | •••  | •••  | •••  |      | •••   | •••   |
| Mullet (Ludong)               |      | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••   | •••   |
| Sardines (Tawilis)            |      |      | •••  |      | •••  |      |      |      |      |       |       |
| Silver perch (Ayungin)        | 3.1  | 3.3  | 4.4  | 4.0  | 3.5  | 3.5  | 3.7  | 3.7  | 3.0  | 6.3   | 8.7   |
| Spade fish (Kitang)           |      |      | •••  | •••  | •••  | •••  | •••  | •••  |      | •••   | •••   |
| Starry goby (Dulong)          |      |      | •••  | •••  | •••  |      | •••  | •••  |      | •••   | •••   |
| Tarpon (Buan Buan)            |      |      | •••  | •••  | •••  | •••  | •••  | •••  |      | •••   | •••   |
| Tilapia                       | 43.2 | 45.8 | 47.2 | 50.6 | 51.9 | 52.9 | 54.6 | 58.8 | 61.2 | 64.0  | 63.0  |
| Big head carp                 | 1.5  | 2.3  | 0.6  | 0.1  | •••  | •••  | •••  | •••  |      | •••   | •••   |
| Other fishes                  | 1.0  |      |      |      |      |      | •••  |      |      |       |       |
| Crustaceans                   |      |      |      |      |      |      |      |      | 0.3  | 0.1   |       |
| Blue crab (Alimasag)          |      |      | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••   | •••   |
| Endeavor prawn (Suahe)        |      |      |      |      |      |      |      |      |      |       | •••   |
| Freshwater crab<br>(Talangka) |      |      |      |      | •••  |      |      |      | 0.0  |       |       |
| Freshwater shrimp<br>(Hipon)  |      | •••  | •••  | •••  | •••  | •••  | •••  | •••  | 0.3  | 0.1   |       |
| Lobster (Ulang)               |      | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••  | •••   | •••   |
| Mud crab (Alimango)           |      |      |      |      |      |      |      |      |      |       |       |
| Tiger prawn (Sugpo)           |      |      |      |      |      | •••  |      |      | •••  |       |       |
| White shrimp (Hipong<br>Puti) |      |      |      |      |      |      |      |      |      |       |       |
| Other crustaceans             |      |      |      |      |      |      |      |      |      |       |       |
| Molluscs                      | 4.3  | 5.1  | 4.7  | 4.8  | 5.5  | 6.1  | 6.5  | 6.8  | 1.8  |       |       |
| Clams (Kabibi)                |      |      |      |      |      |      |      |      |      |       |       |
| Freshwater clams (Tulya)      | 4.3  | 5.1  | 4.7  | 4.8  | 5.5  | 6.1  | 6.5  | 6.8  | 1.8  |       |       |
| Oyster (Talaba)               |      |      |      |      |      |      |      |      |      |       |       |
| Shell (Kuhol)                 |      |      |      |      |      |      |      |      |      |       | •••   |
| Snail (Suso)                  |      |      |      |      |      |      |      |      |      |       |       |
| Other molluscs                |      | •••  |      |      |      | •••  |      |      | •••  |       |       |

Table 2.7 Inland Municipal Fisheries: Volume of Production by Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                               | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Ifugao                        | 255.1 | 230.7 | 199.9 | 248.5 | 259.4 | 264.4 | 267.3 | 252.0 | 325.9 | 333.2 | 240.5 |
| Fish                          | 248.4 | 225.1 | 198.8 | 247.5 | 258.3 | 263.3 | 266.2 | 251.3 | 324.7 | 331.9 | 236.1 |
|                               |       |       | 14.2  |       | 16.3  |       |       |       | 26.0  | 26.7  | 34.1  |
| Carp (Hita)                   | 15.8  | 14.5  |       | 15.8  |       | 17.3  | 17.6  | 17.3  |       |       |       |
| Catfish (Hito)                |       |       |       |       |       |       |       |       | 0.5   | 0.5   | 1.1   |
| Catfish (Kanduli)             | 11.1  | 8.7   | 7.9   | 7.2   | 7.0   | 6.7   | 6.7   | 0.5   |       |       | •••   |
| Climbing perch<br>(Martiniko) | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |
| Eel (Igat)                    |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater goby (Biya)        | 33.3  | 31.1  | 28.2  | 46.3  | 52.0  | 52.6  | 52.9  | 50.0  | 34.3  | 35.4  | 26.4  |
| Gourami                       |       |       |       |       |       | •••   |       | •••   |       |       | •••   |
| Milkfish (Bangus)             |       |       |       |       |       |       |       |       |       |       |       |
| Mudfish (Dalag)               |       |       |       |       |       | •••   |       | •••   | 1.1   | 1.0   | 5.0   |
| Mullet (Kapak)                |       |       |       |       |       | •••   |       | •••   |       |       | •••   |
| Mullet (Ludong)               |       |       |       |       |       | •••   |       | •••   |       |       | •••   |
| Sardines (Tawilis)            |       |       |       |       |       |       |       |       |       |       |       |
| Silver perch (Ayungin)        | 38.2  | 35.5  | 31.6  | 49.8  | 56.5  | 57.5  | 57.8  | 55.2  | 32.3  | 32.9  | 25.2  |
| Spade fish (Kitang)           |       |       |       |       |       |       |       |       |       |       |       |
| Starry goby (Dulong)          |       |       |       |       |       | •••   | •••   | •••   | •••   |       | •••   |
| Tarpon (Buan Buan)            |       |       |       |       |       | •••   | •••   | •••   | •••   |       | •••   |
| Tilapia                       | 150.0 | 135.3 | 115.8 | 128.5 | 126.6 | 129.3 | 131.2 | 128.3 | 161.4 | 165.2 | 107.6 |
| Big head carp                 |       |       | 1.0   |       |       |       |       |       |       |       |       |
| Other fishes                  |       |       |       |       |       |       |       |       | 69.2  | 70.1  | 36.7  |
| Crustaceans                   | 6.8   | 5.6   | 1.1   | 1.0   | 1.1   | 1.1   | 1.1   | 0.7   | 1.3   | 1.4   | 4.4   |
| Blue crab (Alimasag)          |       |       |       |       |       |       |       |       |       |       |       |
| Endeavor prawn (Suahe)        |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater crab<br>(Talangka) | •••   |       |       |       |       |       |       |       |       |       |       |
| Freshwater shrimp<br>(Hipon)  | 6.8   | 5.6   | 1.1   | 1.0   | 1.1   | 1.1   | 1.1   | 0.7   | 1.3   | 1.4   | 4.4   |
| Lobster (Ulang)               |       |       |       |       |       |       |       |       |       |       |       |
| Mud crab (Alimango)           |       |       |       |       |       |       |       |       |       |       |       |
| Tiger prawn (Sugpo)           |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp (Hipong<br>Puti) |       |       |       |       |       |       |       |       |       |       |       |
| Other crustaceans             |       |       |       |       |       |       |       |       |       |       |       |
| Molluscs                      |       |       |       |       |       |       |       |       |       |       | •••   |
| Clams (Kabibi)                |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater clams (Tulya)      |       |       |       |       |       |       |       |       |       |       |       |
| Oyster (Talaba)               |       |       |       |       |       |       |       |       |       |       |       |
| Shell (Kuhol)                 |       |       |       |       |       |       |       |       |       |       |       |
| Snail (Suso)                  | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Other molluscs                | •••   | •••   |       | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |
| Other monases                 | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       | •••   |

Table 2.7 Inland Municipal Fisheries: Volume of Production by Species and Geolocation 2008 to 2018 (in metric tons) (continued)

|                               | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                               |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga                       | 204.7 | 221.0 | 225.2 | 230.7 | 243.4 | 255.5 | 272.1 | 289.7 | 299.6 | 304.4 | 286.8 |
| Fish                          | 168.9 | 179.6 | 181.5 | 185.3 | 196.3 | 205.7 | 217.7 | 233.5 | 239.9 | 230.3 | 191.7 |
| Carp                          | 13.7  | 14.5  | 15.6  | 16.3  | 17.0  | 18.1  | 19.0  | 19.5  | 19.7  | 18.8  | 17.1  |
| Catfish (Hito)                | 15.6  | 17.8  | 17.7  | 18.1  | 18.8  | 19.5  | 20.4  | 20.9  | 20.9  | 22.4  | 18.1  |
| Catfish (Kanduli)             | 1.9   | 1.5   | 1.6   | 1.6   | 1.7   | 3.0   | 3.7   | 1.9   | 1.8   | 3.6   | 10.1  |
| Climbing perch<br>(Martiniko) |       |       | •••   | •••   | •••   | •••   | •••   | •••   | •••   |       |       |
| Eel (Igat)                    | 8.7   | 8.8   | 9.5   | 9.8   | 10.4  | 11.4  | 13.5  | 14.0  | 14.1  | 9.1   | 10.2  |
| Freshwater goby (Biya)        | 20.0  | 19.6  | 18.6  | 19.5  | 20.3  | 21.4  | 23.2  | 23.9  | 24.7  | 25.9  | 16.6  |
| Gourami                       | 5.4   | 4.5   | 3.6   | 3.1   | 2.8   | 2.5   | 1.4   | 1.2   | •••   |       |       |
| Milkfish (Bangus)             |       | 1.4   |       |       |       |       |       |       |       |       |       |
| Mudfish (Dalag)               | 20.0  | 21.7  | 23.1  | 23.5  | 24.2  | 24.0  | 24.6  | 25.8  | 25.3  | 28.6  | 14.4  |
| Mullet (Kapak)                |       |       |       |       |       |       |       |       |       |       |       |
| Mullet (Ludong)               |       |       |       |       |       |       |       |       | •••   |       |       |
| Sardines (Tawilis)            |       |       |       |       |       |       |       |       |       |       |       |
| Silver perch (Ayungin)        | 10.2  | 10.8  | 11.3  | 11.6  | 11.6  | 11.3  | 10.1  | 10.0  | 8.3   | 5.8   |       |
| Spade fish (Kitang)           |       |       |       |       |       | •••   |       |       |       |       |       |
| Starry goby (Dulong)          |       |       |       |       |       |       |       |       |       |       |       |
| Tarpon (Buan Buan)            |       |       |       |       |       |       |       |       |       |       |       |
| Tilapia                       | 73.5  | 78.9  | 80.6  | 81.8  | 89.6  | 94.5  | 101.7 | 108.5 | 113.2 | 103.0 | 83.1  |
| Big head carp                 |       |       |       |       |       |       |       |       |       |       | •••   |
| Other fishes                  |       |       |       |       |       |       | •••   | 7.8   | 11.7  | 13.1  | 22.1  |
| Crustaceans                   | 16.1  | 16.9  | 17.7  | 18.0  | 18.8  | 19.8  | 21.2  | 21.9  | 24.5  | 28.4  | 17.9  |
| Blue crab (Alimasag)          |       |       |       |       |       |       |       |       |       |       |       |
| Endeavor prawn (Suahe)        |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater crab<br>(Talangka) |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater shrimp<br>(Hipon)  | 16.1  | 16.9  | 17.7  | 18.0  | 18.8  | 19.8  | 21.2  | 21.9  | 24.5  | 28.4  | 17.9  |
| Lobster (Ulang)               |       |       |       |       |       |       |       |       |       |       |       |
| Mud crab (Alimango)           |       |       |       |       |       |       |       |       |       |       |       |
| Tiger prawn (Sugpo)           |       |       |       |       |       |       |       |       |       |       |       |
| White shrimp (Hipong<br>Puti) |       |       |       |       |       |       |       | •••   |       |       | •••   |
| Other crustaceans             |       |       |       |       |       |       |       |       |       |       |       |
| Molluscs                      | 19.7  | 24.5  | 25.9  | 27.4  | 28.4  | 30.1  | 33.2  | 34.3  | 35.3  | 45.8  | 77.2  |
| Clams (Kabibi)                |       |       |       |       |       |       |       |       |       |       |       |
| Freshwater clams (Tulya)      | 9.6   | 11.4  | 11.9  | 12.8  | 13.1  | 14.1  | 15.5  | 17.5  | 18.1  | 21.9  | 28.4  |
| Oyster (Talaba)               |       |       |       |       |       |       |       |       |       |       |       |
| Shell (Kuhol)                 | •••   |       |       |       |       | •••   |       |       |       |       |       |
| Snail (Suso)                  | 10.1  | 13.1  | 14.0  | 14.6  | 15.2  | 16.0  | 17.7  | 16.8  | 17.2  | 23.8  | 48.8  |
| Other molluscs                |       |       |       |       |       |       |       |       |       |       |       |
| o their monases               | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   | •••   |

Table 2.7 Inland Municipal Fisheries: Volume of Production by Species and Geolocation 2008 to 2018 (in metric tons) (continued)

| Mountain Province  Fish  Carp  Catfish (Hito)  Catfish (Kanduli)  Climbing perch (Martiniko)  Eel (Igat)  Gourami  Milkfish (Bangus)  Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia  Other fishes  O.  Crustaceans |   | 9.3 | 8.6 |     |     |     |     |     |     |     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Carp Catfish (Hito) Catfish (Kanduli) Climbing perch (Martiniko) Eel (Igat) Gourami Milkfish (Bangus) Mudfish (Dalag) Mullet (Kapak) Mullet (Ludong) Sardines (Tawilis) Silver perch (Ayungin) Spade fish (Kitang) Starry goby (Dulong) Tarpon (Buan Buan) Tilapia Big head carp Other fishes O.                                          | 2 |     | 0.0 | 7.1 | 6.6 | 6.2 | 6.5 | 7.2 | 8.9 | 7.1 | 3.9 |
| Catfish (Hito)  Catfish (Kanduli)  Climbing perch (Martiniko)  Eel (Igat)  Gourami  Milkfish (Bangus)  Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia  Big head carp  Other fishes                                  |   | 9.3 | 8.6 | 7.1 | 6.6 | 6.2 | 6.5 | 7.2 | 8.9 | 7.1 | 3.9 |
| Catfish (Kanduli)  Climbing perch (Martiniko)  Eel (Igat) 0.  Freshwater goby (Biya) 7.  Gourami  Milkfish (Bangus)  Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.              |   |     |     |     | ••• | ••• | ••• | 0.1 | 0.7 | 0.4 | 0.4 |
| Climbing perch (Martiniko)  Eel (Igat) 0.  Freshwater goby (Biya) 7.  Gourami  Milkfish (Bangus)  Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tilapia 0.  Big head carp  Other fishes 0.                                                     |   |     |     |     |     |     | ••• |     |     | 0.1 |     |
| (Martiniko) ""  Eel (Igat) 0.  Freshwater goby (Biya) 7.  Gourami  Milkfish (Bangus)  Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.                                             |   |     | ••• |     | ••• |     | ••• |     |     |     |     |
| Freshwater goby (Biya) 7. Gourami Milkfish (Bangus) Mudfish (Dalag) Mullet (Kapak) Mullet (Ludong) Sardines (Tawilis) Silver perch (Ayungin) Spade fish (Kitang) Starry goby (Dulong) Tarpon (Buan Buan) Tilapia 0. Big head carp Other fishes 0.                                                                                         |   |     |     |     |     |     |     |     |     |     |     |
| Gourami  Milkfish (Bangus)  Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.                                                                                                       | 6 | 0.1 |     |     | 0.2 |     | ••• | 0.1 | 0.4 | 0.2 | 0.0 |
| Milkfish (Bangus)  Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.                                                                                                                | 5 | 7.5 | 6.9 | 5.4 | 4.6 | 4.1 | 4.1 | 4.5 | 4.5 | 4.1 | 1.9 |
| Mudfish (Dalag)  Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.                                                                                                                                   |   |     |     |     |     |     | ••• |     |     |     |     |
| Mullet (Kapak)  Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.                                                                                                                                                    |   |     |     |     |     |     |     |     |     |     |     |
| Mullet (Ludong)  Sardines (Tawilis)  Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.                                                                                                                                                                    |   |     |     |     |     |     | ••• |     |     |     |     |
| Sardines (Tawilis) Silver perch (Ayungin) Spade fish (Kitang) Starry goby (Dulong) Tarpon (Buan Buan) Tilapia 0. Big head carp Other fishes 0.                                                                                                                                                                                            |   |     |     |     |     |     | ••• |     |     |     |     |
| Silver perch (Ayungin)  Spade fish (Kitang)  Starry goby (Dulong)  Tarpon (Buan Buan)  Tilapia 0.  Big head carp  Other fishes 0.                                                                                                                                                                                                         |   |     |     |     |     |     |     |     |     |     |     |
| Spade fish (Kitang) Starry goby (Dulong) Tarpon (Buan Buan) Tilapia 0. Big head carp Other fishes 0.                                                                                                                                                                                                                                      |   |     |     |     |     |     |     |     |     |     |     |
| Spade fish (Kitang) Starry goby (Dulong) Tarpon (Buan Buan) Tilapia 0. Big head carp Other fishes 0.                                                                                                                                                                                                                                      |   |     |     |     |     |     |     |     |     |     |     |
| Tarpon (Buan Buan) Tilapia 0. Big head carp Other fishes 0.                                                                                                                                                                                                                                                                               |   |     |     |     |     |     |     |     |     |     |     |
| Tilapia 0.  Big head carp  Other fishes 0.                                                                                                                                                                                                                                                                                                |   |     |     |     |     |     |     |     |     |     |     |
| Big head carp Other fishes 0.                                                                                                                                                                                                                                                                                                             |   |     |     |     |     |     |     |     |     |     |     |
| Big head carp Other fishes 0.                                                                                                                                                                                                                                                                                                             |   | 1.3 | 1.6 | 1.7 | 1.9 | 2.1 | 2.4 | 1.9 | 1.7 | 1.2 | 0.9 |
| Other fishes 0.                                                                                                                                                                                                                                                                                                                           |   |     |     |     |     |     |     |     |     |     |     |
| Crustaceans                                                                                                                                                                                                                                                                                                                               |   | 0.4 | 0.2 |     |     |     |     | 0.5 | 1.6 | 1.2 | 0.6 |
|                                                                                                                                                                                                                                                                                                                                           |   |     |     |     |     |     |     |     |     |     |     |
| Blue crab (Alimasag)                                                                                                                                                                                                                                                                                                                      |   |     |     |     |     |     |     |     |     |     |     |
| Endeavor prawn (Suahe)                                                                                                                                                                                                                                                                                                                    |   |     |     |     |     |     |     |     |     |     |     |
| Freshwater crab<br>(Talangka)                                                                                                                                                                                                                                                                                                             |   |     |     |     |     |     |     |     |     |     |     |
| Freshwater shrimp<br>(Hipon)                                                                                                                                                                                                                                                                                                              |   |     |     |     |     |     |     |     |     |     |     |
| Lobster (Ulang)                                                                                                                                                                                                                                                                                                                           |   |     |     |     |     |     | ••• |     |     |     |     |
| Mud crab (Alimango)                                                                                                                                                                                                                                                                                                                       |   |     |     |     |     |     |     |     |     |     |     |
| Tiger prawn (Sugpo)                                                                                                                                                                                                                                                                                                                       |   |     |     |     |     |     | ••• |     |     |     |     |
| White shrimp (Hipong                                                                                                                                                                                                                                                                                                                      |   |     |     |     | ••• |     |     | ••• |     |     |     |
| Other crustaceans                                                                                                                                                                                                                                                                                                                         |   |     |     |     |     |     |     |     |     |     |     |
| Molluscs                                                                                                                                                                                                                                                                                                                                  |   |     |     |     |     |     | ••• |     |     |     |     |
| Clams (Kabibi)                                                                                                                                                                                                                                                                                                                            |   |     |     |     |     |     | ••• |     |     |     |     |
| Freshwater clams (Tulya)                                                                                                                                                                                                                                                                                                                  |   | ••• |     |     |     |     |     |     |     | ••• |     |
| Oyster (Talaba)                                                                                                                                                                                                                                                                                                                           |   |     |     |     |     |     |     |     |     |     |     |
| Shell (Kuhol)                                                                                                                                                                                                                                                                                                                             |   |     |     |     |     |     |     |     |     |     |     |
| Snail (Suso)                                                                                                                                                                                                                                                                                                                              |   |     |     |     |     |     |     |     |     |     |     |
| Other molluscs                                                                                                                                                                                                                                                                                                                            |   | ••• |     |     |     |     |     |     |     |     |     |

Source: Philippine Statistics Authority

Table 2.8 Palay and Corn: Area Harvested by Ecosystem/Croptype and Geolocation 2008 to 2018 (in hectares) (continued)

|                      | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Palay                |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 119,816 | 119,368 | 117,057 | 118,779 | 120,100 | 119,919 | 118,476 | 111,482 | 110,640 | 115,555 | 111,387 |
| Abra                 | 22,695  | 23,675  | 23,673  | 23,882  | 24,023  | 24,031  | 24,056  | 23,987  | 23,993  | 24,014  | 23,541  |
| Apayao               | 29,636  | 29,333  | 29,281  | 29,376  | 29,429  | 28,942  | 27,566  | 27,552  | 24,950  | 26,245  | 23,312  |
| Benguet              | 6,314   | 6,236   | 6,194   | 5,994   | 6,286   | 6,286   | 6,286   | 6,284   | 6,564   | 6,976   | 7,098   |
| Ifugao               | 17,229  | 17,129  | 16,974  | 17,193  | 17,193  | 17,234  | 17,259  | 17,259  | 17,253  | 17,248  | 17,220  |
| Kalinga              | 36,338  | 35,803  | 34,763  | 36,070  | 36,758  | 37,044  | 37,041  | 31,424  | 33,059  | 35,913  | 35,062  |
| Mountain<br>Province | 7,604   | 7,192   | 6,172   | 6,264   | 6,411   | 6,382   | 6,268   | 4,976   | 4,821   | 5,159   | 5,154   |
| Irrigated Palay      |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 93,011  | 93,265  | 91,265  | 93,043  | 94,068  | 94,352  | 93,301  | 86,521  | 88,006  | 92,205  | 90,420  |
| Abra                 | 13,775  | 14,755  | 14,763  | 14,804  | 14,915  | 14,920  | 14,950  | 14,927  | 14,919  | 14,934  | 14,480  |
| Apayao               | 16,968  | 17,140  | 17,140  | 17,319  | 17,372  | 17,358  | 16,267  | 16,270  | 15,968  | 16,877  | 15,933  |
| Benguet              | 5,304   | 5,230   | 5,188   | 5,081   | 5,200   | 5,200   | 5,200   | 5,200   | 5,276   | 5,755   | 5,877   |
| Ifugao               | 16,387  | 16,287  | 16,132  | 16,336  | 16,336  | 16,374  | 16,399  | 16,399  | 16,393  | 16,388  | 16,382  |
| Kalinga              | 34,112  | 33,682  | 32,724  | 34,031  | 34,739  | 35,023  | 35,098  | 29,485  | 31,244  | 34,011  | 33,515  |
| Mountain<br>Province | 6,465   | 6,171   | 5,318   | 5,472   | 5,506   | 5,477   | 5,387   | 4,240   | 4,206   | 4,240   | 4,233   |
| Rainfed Palay        |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 26,805  | 26,103  | 25,792  | 25,736  | 26,032  | 25,567  | 25,175  | 24,961  | 22,634  | 23,350  | 20,967  |
| Abra                 | 8,920   | 8,920   | 8,910   | 9,078   | 9,108   | 9,111   | 9,106   | 9,060   | 9,074   | 9,080   | 9,061   |
| Apayao               | 12,668  | 12,193  | 12,141  | 12,057  | 12,057  | 11,584  | 11,299  | 11,282  | 8,982   | 9,368   | 7,379   |
| Benguet              | 1,010   | 1,006   | 1,006   | 913     | 1,086   | 1,086   | 1,086   | 1,084   | 1,288   | 1,221   | 1,221   |
| lfugao               | 842     | 842     | 842     | 857     | 857     | 860     | 860     | 860     | 860     | 860     | 838     |
| Kalinga              | 2,226   | 2,121   | 2,039   | 2,039   | 2,019   | 2,021   | 1,943   | 1,939   | 1,815   | 1,902   | 1,547   |
| Mountain<br>Province | 1,139   | 1,021   | 854     | 792     | 905     | 905     | 881     | 736     | 615     | 919     | 921     |
| Corn                 |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 52,698  | 55,212  | 48,991  | 56,051  | 57,290  | 61,639  | 64,832  | 64,411  | 61,045  | 61,391  | 58,405  |
| Abra                 | 6,026   | 6,552   | 6,552   | 6,552   | 6,441   | 6,448   | 6,447   | 6,397   | 6,430   | 6,390   | 6,289   |
| Apayao               | 4,848   | 4,853   | 4,014   | 5,343   | 5,812   | 6,739   | 7,200   | 6,748   | 6,595   | 7,040   | 6,225   |
| Benguet              | 39      | 39      | 39      | 35      | 35      | 37      | 38      | 38      | 38      | 39      | 129     |
| lfugao               | 23,000  | 22,992  | 22,992  | 24,034  | 24,658  | 27,329  | 30,114  | 30,139  | 28,450  | 27,891  | 28,249  |
| Kalinga              | 11,912  | 14,122  | 11,305  | 14,314  | 14,318  | 14,890  | 14,459  | 14,507  | 13,113  | 13,803  | 11,394  |
| Mountain<br>Province | 6,873   | 6,654   | 4,089   | 5,773   | 6,026   | 6,196   | 6,574   | 6,582   | 6,419   | 6,228   | 6,119   |
| White Corn           |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 8,759   | 8,856   | 8,350   | 8,538   | 8,437   | 8,413   | 8,368   | 8,125   | 7,497   | 7,198   | 6,696   |
| Abra                 | 5,806   | 6,332   | 6,332   | 6,342   | 6,241   | 6,250   | 6,249   | 6,199   | 6,232   | 6,192   | 6,091   |
| Apayao               | 742     | 557     | 323     | 486     | 368     | 340     | 328     | 316     | 307     | 310     | 304     |
| Benguet              | 34      | 34      | 34      | 32      | 32      | 34      | 35      | 35      | 30      | 30      | 19      |
| lfugao               | 1,000   | 750     | 650     | 583     | 733     | 733     | 733     | 733     | 311     | 90      | 120     |
| Kalinga              | 890     | 925     | 725     | 849     | 760     | 770     | 770     | 770     | 571     | 471     | 130     |
| Mountain<br>Province | 287     | 258     | 286     | 246     | 303     | 286     | 253     | 72      | 46      | 105     | 32      |

Table 2.8 Palay and Corn: Area Harvested by Ecosystem/Croptype and Geolocation 2008 to 2018 (in hectares)

|                      | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Yellow Corn          |        |        |        |        |        |        |        |        |        |        |        |
| CAR                  | 43,939 | 46,356 | 40,641 | 47,513 | 48,853 | 53,226 | 56,464 | 56,286 | 53,548 | 54,193 | 51,709 |
| Abra                 | 220    | 220    | 220    | 210    | 200    | 198    | 198    | 198    | 198    | 198    | 198    |
| Apayao               | 4,106  | 4,296  | 3,691  | 4,857  | 5,444  | 6,399  | 6,872  | 6,432  | 6,288  | 6,730  | 5,921  |
| Benguet              | 5      | 5      | 5      | 3      | 3      | 3      | 3      | 3      | 8      | 9      | 110    |
| Ifugao               | 22,000 | 22,242 | 22,342 | 23,451 | 23,925 | 26,596 | 29,381 | 29,406 | 28,139 | 27,801 | 28,129 |
| Kalinga              | 11,022 | 13,197 | 10,580 | 13,465 | 13,558 | 14,120 | 13,689 | 13,737 | 12,542 | 13,332 | 11,264 |
| Mountain<br>Province | 6,586  | 6,396  | 3,803  | 5,527  | 5,723  | 5,910  | 6,321  | 6,510  | 6,373  | 6,123  | 6,087  |

Source: Philippine Statistics Authority

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                   | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Abaca             |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 870.0   | 870.0   | 579.0   | 579.0   | 550.0   | 499.0   | 481.0   | 430.0   | 249.0   | 249.0   |         |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         |         |         |         |         |         |         |         |         |         |
| Benguet           |         |         |         |         |         |         |         |         |         |         |         |
| lfugao            |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga           |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province | 870.0   | 870.0   | 579.0   | 579.0   | 550.0   | 499.0   | 481.0   | 430.0   | 249.0   | 249.0   |         |
| Cacao             |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 26.0    | 26.0    | 27.0    | 29.0    | 31.0    | 40.0    | 52.0    | 52.0    | 57.0    | 49.7    | 51.0    |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            | 12.0    | 12.0    | 12.0    | 12.0    | 15.0    | 20.0    | 30.0    | 30.0    | 30.0    | 22.7    | 23.0    |
| Benguet           | 12.0    | 12.0    | 12.0    | 12.0    | 11.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    |
| Ifugao            |         |         |         |         |         |         | •••     |         | •••     |         |         |
| Kalinga           | 2.0     | 2.0     | 3.0     | 5.0     | 5.0     | 10.0    | 10.0    | 10.0    | 15.0    | 15.0    | 15.0    |
| Mountain Province |         |         |         |         |         |         | 2.0     | 2.0     | 2.0     | 2.0     | 3.0     |
| Cashew            |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 1.0     | 1.0     |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         |         |         |         |         | •••     |         | •••     |         |         |
| Benguet           |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao            |         |         |         |         |         |         | •••     | •••     | •••     |         |         |
| Kalinga           | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 1.0     | 1.0     |
| Mountain Province |         |         |         |         |         |         |         |         |         |         |         |
| Chrysanthemum     |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 57.0    | 61.0    | 61.0    | 62.0    | 62.0    | 62.0    | 60.0    | 60.2    | 55.1    | 58.0    | 64.0    |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         |         |         |         |         |         |         |         |         |         |
| Benguet           | 57.0    | 61.0    | 61.0    | 62.0    | 62.0    | 62.0    | 60.0    | 60.0    | 55.0    | 58.0    | 64.0    |
| lfugao            |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga           |         |         |         |         |         |         |         | 0.2     | 0.1     |         |         |
| Mountain Province |         |         |         |         |         |         |         |         |         |         |         |
| Coconut           |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 281.0   | 281.0   | 281.0   | 285.0   | 300.0   | 332.0   | 362.0   | 378.0   | 375.0   | 333.1   | 334.0   |
| Abra              | 65.0    | 65.0    | 65.0    | 65.0    | 65.0    | 65.0    | 65.0    | 65.0    | 65.0    | 65.0    | 65.0    |
| Apayao            | 50.0    | 50.0    | 50.0    | 55.0    | 70.0    | 100.0   | 130.0   | 130.0   | 130.0   | 88.1    | 86.0    |
| Benguet           | 9.0     | 9.0     | 9.0     | 9.0     | 9.0     | 9.0     | 9.0     | 9.0     | 9.0     | 9.0     | 9.0     |
| Ifugao            | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 22.0    | 22.0    | 22.0    | 22.0    | 22.0    | 22.0    |
| Kalinga           | 84.0    | 84.0    | 84.0    | 84.0    | 84.0    | 84.0    | 84.0    | 100.0   | 100.0   | 100.0   | 100.0   |
| Mountain Province | 52.0    | 52.0    | 52.0    | 51.0    | 51.0    | 52.0    | 52.0    | 52.0    | 49.0    | 49.0    | 52.0    |
| Coffee            |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 7,270.0 | 6,980.0 | 6,866.0 | 6,720.0 | 6,716.0 | 6,695.0 | 6,680.5 | 6,631.0 | 6,322.0 | 6,289.4 | 5,983.0 |
| Abra              | 47.0    | 47.0    | 47.0    | 47.0    | 47.0    | 47.0    | 47.0    | 47.0    | 47.0    | 47.0    | 47.0    |
|                   |         |         |         |         |         |         |         |         |         |         |         |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares)

|                   | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Apayao            | 116.0   | 116.0   | 116.0   | 109.0   | 135.0   | 140.0   | 130.0   | 121.0   | 123.0   | 105.4   | 105.0   |
| Benguet           | 303.0   | 308.0   | 322.0   | 322.0   | 321.0   | 321.0   | 340.5   | 340.0   | 340.0   | 340.0   | 340.0   |
| Ifugao            | 2,532.0 | 2,526.0 | 2,520.0 | 2,513.0 | 2,513.0 | 2,511.0 | 2,511.0 | 2,511.0 | 2,251.0 | 2,251.0 | 2,251.0 |
| Kalinga           | 3,475.0 | 3,475.0 | 3,475.0 | 3,431.0 | 3,431.0 | 3,427.0 | 3,427.0 | 3,429.0 | 3,427.0 | 3,426.0 | 3,120.0 |
| Mountain Province | 797.0   | 508.0   | 386.0   | 298.0   | 269.0   | 249.0   | 225.0   | 183.0   | 134.0   | 120.0   | 120.0   |
| Coffee Arabica    |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 578.0   | 574.0   | 585.0   | 594.0   | 618.0   | 619.0   | 629.0   | 627.0   | 615.0   | 606.9   | 593.0   |
| Abra              | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    | 21.0    |
| Apayao            | 25.0    | 25.0    | 25.0    | 18.0    | 50.0    | 50.0    | 40.0    | 34.0    | 34.0    | 29.9    | 30.0    |
| Benguet           | 220.0   | 225.0   | 236.0   | 236.0   | 236.0   | 236.0   | 256.0   | 256.0   | 256.0   | 256.0   | 256.0   |
| Ifugao            | 50.0    | 50.0    | 50.0    | 50.0    | 50.0    | 51.0    | 51.0    | 51.0    | 51.0    | 51.0    | 51.0    |
| Kalinga           | 168.0   | 168.0   | 168.0   | 184.0   | 184.0   | 184.0   | 184.0   | 186.0   | 184.0   | 184.0   | 170.0   |
| Mountain Province | 94.0    | 85.0    | 85.0    | 85.0    | 77.0    | 77.0    | 77.0    | 79.0    | 69.0    | 65.0    | 65.0    |
| Coffee Excelsa    |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 191.0   | 190.0   | 190.0   | 223.0   | 221.0   | 215.0   | 204.5   | 201.0   | 201.0   | 195.5   | 187.0   |
| Abra              | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     |
| Apayao            | 18.0    | 18.0    | 18.0    | 36.0    | 35.0    | 30.0    | 20.0    | 17.0    | 17.0    | 12.5    | 12.0    |
| Benguet           | 22.0    | 22.0    | 22.0    | 22.0    | 21.0    | 21.0    | 20.5    | 20.0    | 20.0    | 20.0    | 20.0    |
| Ifugao            | •••     | •••     | •••     | •••     | •••     |         |         | •••     | •••     | •••     |         |
| Kalinga           | 143.0   | 143.0   | 143.0   | 159.0   | 159.0   | 159.0   | 159.0   | 159.0   | 159.0   | 158.0   | 150.0   |
| Mountain Province | 3.0     | 2.0     | 2.0     | 1.0     | 1.0     |         |         | •••     | •••     | •••     |         |
| Coffee Liberica   |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    |
| Abra              | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    |
| Apayao            |         |         |         |         |         |         |         |         |         |         |         |
| Benguet           |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao            |         |         | •••     |         |         |         |         |         | •••     | •••     |         |
| Kalinga           |         |         | •••     |         |         |         |         |         | •••     | •••     |         |
| Mountain Province |         |         | •••     |         |         |         |         |         | •••     | •••     |         |
| Coffee Robusta    |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 6,055.0 | 5,770.0 | 5,645.0 | 5,887.0 | 5,861.0 | 5,845.0 | 5,831.0 | 5,787.0 | 5,490.0 | 5,471.0 | 5,187.0 |
| Abra              | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     |
| Apayao            | 55.0    | 55.0    | 55.0    | 55.0    | 50.0    | 60.0    | 70.0    | 70.0    | 72.0    | 63.0    | 63.0    |
| Benguet           | 61.0    | 61.0    | 64.0    | 64.0    | 64.0    | 64.0    | 64.0    | 64.0    | 64.0    | 64.0    | 64.0    |
| Ifugao            | 2,482.0 | 2,476.0 | 2,470.0 | 2,463.0 | 2,463.0 | 2,460.0 | 2,460.0 | 2,460.0 | 2,200.0 | 2,200.0 | 2,200.0 |
| Kalinga           | 2,752.0 | 2,752.0 | 2,752.0 | 3,088.0 | 3,088.0 | 3,084.0 | 3,084.0 | 3,084.0 | 3,084.0 | 3,084.0 | 2,800.0 |
| Mountain Province | 700.0   | 421.0   | 299.0   | 212.0   | 191.0   | 172.0   | 148.0   | 104.0   | 65.0    | 55.0    | 55.0    |
| Cotton            |         |         |         |         |         |         |         |         |         |         |         |
| CAR               |         |         | •••     |         |         |         |         |         | •••     | •••     |         |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         |         |         |         |         |         |         |         |         |         |
| Benguet           |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao            |         |         | •••     |         | •••     |         |         | •••     | •••     | •••     |         |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                   | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| Kalinga           |      |      |      |      |      |      |      |      |      |      |      |
| Mountain Province |      |      |      |      |      |      |      |      |      |      |      |
| Gladiola          |      |      |      |      |      |      |      |      |      |      |      |
| CAR               | 91.0 | 87.0 | 84.0 | 80.0 | 75.0 | 37.0 | 30.0 | 25.0 | 18.0 | 18.0 | 13.0 |
| Abra              |      |      |      |      |      |      |      |      |      |      |      |
| Apayao            |      |      |      |      |      |      |      |      |      |      |      |
| Benguet           | 91.0 | 87.0 | 84.0 | 80.0 | 75.0 | 37.0 | 30.0 | 25.0 | 18.0 | 18.0 | 13.0 |
| lfugao            |      |      |      |      |      |      |      |      |      |      |      |
| Kalinga           |      |      |      |      |      |      |      |      |      |      |      |
| Mountain Province |      |      |      |      |      |      |      |      |      |      |      |
| Oil Palm          |      |      |      |      |      |      |      |      |      |      |      |
| CAR               |      |      |      |      |      |      |      |      |      |      |      |
| Abra              | •••  |      |      |      |      |      |      |      |      |      |      |
| Apayao            |      |      |      |      |      |      |      |      |      |      |      |
| Benguet           |      |      |      |      |      |      |      |      |      |      |      |
| lfugao            |      |      |      |      |      |      |      |      |      |      |      |
| Kalinga           |      |      |      |      |      |      |      |      |      |      |      |
| Mountain Province |      |      |      |      |      |      |      |      |      |      |      |
| Orchids           |      |      |      |      |      |      |      |      |      |      |      |
| CAR               |      |      |      |      |      |      |      |      |      |      |      |
| Abra              |      |      |      |      |      |      |      |      |      |      |      |
| Apayao            |      |      |      |      |      |      |      |      |      |      |      |
| Benguet           |      |      |      |      |      |      |      |      |      |      |      |
| lfugao            |      |      |      |      |      |      |      |      |      |      |      |
| Kalinga           |      |      |      |      |      |      |      |      |      |      |      |
| Mountain Province |      |      |      |      |      |      |      |      |      |      |      |
| Pili Nut          |      |      |      |      |      |      |      |      |      |      |      |
| CAR               |      |      |      |      |      |      |      |      |      |      |      |
| Abra              |      |      |      |      |      |      |      |      |      |      |      |
| Apayao            |      |      |      |      |      |      |      |      |      |      |      |
| Benguet           | •••  |      |      |      |      |      |      |      |      |      |      |
| lfugao            |      |      |      |      |      |      |      |      |      |      |      |
| Kalinga           | •••  |      |      |      |      |      |      |      |      |      |      |
| Mountain Province |      |      |      |      |      |      |      |      |      |      |      |
| Roses             |      |      |      |      |      |      |      |      |      |      |      |
| CAR               | 48.0 | 48.0 | 49.0 | 49.0 | 49.0 | 49.0 | 49.0 | 47.8 | 47.0 | 51.8 | 47.0 |
| Abra              | •••  |      |      |      |      |      |      |      |      |      |      |
| Apayao            |      |      |      |      |      |      |      |      |      |      |      |
| Benguet           | 48.0 | 48.0 | 49.0 | 49.0 | 49.0 | 49.0 | 49.0 | 47.8 | 47.0 | 51.8 | 47.0 |
| lfugao            | •••  |      |      |      |      |      |      |      |      |      |      |
| Kalinga           |      |      |      |      |      |      |      |      |      |      |      |
| Mountain Province |      |      |      |      |      |      |      |      |      |      |      |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares)

|                       | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Rubber                |         |         |         |         |         |         |         |         |         |         |         |
| CAR                   |         |         |         |         | 27.0    | 27.0    | 27.0    | 27.0    | 27.0    | 27.0    | 12.0    |
| Abra                  |         |         |         |         |         |         |         |         |         |         |         |
| Apayao                |         |         | ***     |         |         |         |         |         |         |         |         |
| Benguet               |         |         |         |         |         |         |         |         |         |         |         |
| lfugao                |         |         |         |         | 12.0    | 12.0    | 12.0    | 12.0    | 12.0    | 12.0    | 12.0    |
| Kalinga               |         |         | •••     | •••     | 15.0    | 15.0    | 15.0    | 15.0    | 15.0    | 15.0    |         |
| Mountain Province     |         |         | •••     |         |         |         |         |         |         |         |         |
| Sugarcane             |         |         |         |         |         |         |         |         |         |         |         |
| CAR                   | 153.0   | 171.0   | 171.0   | 170.0   | 170.0   | 339.0   | 1,217.0 | 1,213.0 | 1,085.2 | 1,101.0 | 1,017.0 |
| Abra                  |         | 18.0    | 18.0    | 18.0    | 18.0    | 18.0    | 18.0    | 18.0    | 18.0    | 18.0    | 18.0    |
| Apayao                |         |         |         |         |         |         |         |         |         |         |         |
| Benguet               |         |         |         |         |         |         | 5.0     | 5.0     | 5.0     | 8.0     | 8.0     |
| Ifugao                |         |         |         |         |         | 10.0    | 15.0    | 11.0    | 11.0    | 11.0    | 11.0    |
| Kalinga               | 130.0   | 130.0   | 130.0   | 130.0   | 130.0   | 289.0   | 1,156.0 | 1,156.0 | 1,029.0 | 1,027.0 | 952.0   |
| Mountain Province     | 23.0    | 23.0    | 23.0    | 22.0    | 22.0    | 22.0    | 23.0    | 23.0    | 22.2    | 37.0    | 28.0    |
| Tobacco               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                   | 2,021.0 | 2,018.3 | 2,018.0 | 2,012.5 | 2,052.0 | 2,051.0 | 2,051.4 | 2,051.0 | 2,082.3 | 2,066.0 | 2,046.0 |
| Abra                  | 2,010.0 | 2,010.0 | 2,010.0 | 2,005.0 | 2,046.0 | 2,046.0 | 2,046.0 | 2,046.0 | 2,046.0 | 2,046.0 | 2,041.0 |
| Apayao                | 4.0     | 2.0     | 2.0     | 1.5     | 2.0     | 2.0     | 2.0     | 2.0     | 2.3     | 2.0     | 2.0     |
| Benguet               | 1.0     |         |         |         |         |         |         |         |         |         |         |
| lfugao                | 1.0     | 1.3     | 1.0     | 1.0     | 1.0     | 1.0     | 1.4     | 1.0     | 1.0     | 1.0     | 1.0     |
| Kalinga               | 5.0     | 5.0     | 5.0     | 5.0     | 3.0     | 2.0     | 2.0     | 2.0     | 33.0    | 17.0    | 2.0     |
| Mountain Province     |         |         |         |         |         |         |         |         |         |         |         |
| <b>Tobacco Native</b> |         |         |         |         |         |         |         |         |         |         |         |
| CAR                   | 9.0     | 7.0     | 7.0     | 6.5     | 41.0    | 18.4    | 18.4    | 18.4    | 18.7    | 18.4    | 17.4    |
| Abra                  |         |         | •••     | •••     | 36.0    | 14.4    | 14.4    | 14.4    | 14.4    | 14.4    | 13.4    |
| Apayao                | 4.0     | 2.0     | 2.0     | 1.5     | 2.0     | 2.0     | 2.0     | 2.0     | 2.3     | 2.0     | 2.0     |
| Benguet               |         |         | •••     | •••     |         |         |         |         | •••     |         |         |
| Ifugao                |         |         | •••     |         |         |         |         |         | •••     |         |         |
| Kalinga               | 5.0     | 5.0     | 5.0     | 5.0     | 3.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     |
| Mountain Province     |         |         |         |         |         |         |         |         |         |         |         |
| Tobacco Virginia      |         |         |         |         |         |         |         |         |         |         |         |
| CAR                   | 2,011.0 | 2,010.0 | 2,010.0 | 2,005.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,007.0 |
| Abra                  | 2,010.0 | 2,010.0 | 2,010.0 | 2,005.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,010.0 | 2,007.0 |
| Apayao                |         |         |         |         |         |         |         |         |         |         |         |
| Benguet               | 1.0     |         | •••     |         |         |         |         |         | •••     |         |         |
| lfugao                |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga               |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province     |         |         | •••     |         |         |         |         |         |         |         |         |
| Banana                |         |         |         |         |         |         |         |         |         |         |         |
| CAR                   | 4,956.0 | 4,864.0 | 4,842.0 | 4,864.0 | 4,932.0 | 5,149.0 | 4,796.0 | 4,864.4 | 4,782.0 | 2,928.7 | 2,962.9 |
| Abra                  | 863.0   | 864.0   | 864.0   | 864.0   | 864.0   | 866.0   | 863.0   | 863.0   | 863.0   | 848.0   | 848.0   |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                   | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017  | 2018  |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|
| Apayao            | 2,227.0 | 2,225.0 | 2,216.0 | 2,318.0 | 2,379.0 | 2,569.0 | 2,290.0 | 2,345.4 | 2,288.0 | 534.7 | 549.9 |
| Benguet           | 300.0   | 298.0   | 298.0   | 290.0   | 282.0   | 282.0   | 282.0   | 284.0   | 283.0   | 253.0 | 253.0 |
| lfugao            | 874.0   | 852.0   | 852.0   | 813.0   | 813.0   | 813.0   | 722.0   | 722.0   | 723.0   | 710.0 | 708.0 |
| Kalinga           | 295.0   | 295.0   | 271.0   | 271.0   | 296.0   | 302.0   | 318.0   | 329.0   | 329.0   | 338.0 | 334.0 |
| Mountain Province | 397.0   | 330.0   | 341.0   | 308.0   | 298.0   | 317.0   | 321.0   | 321.0   | 296.0   | 245.0 | 270.0 |
| Banana Cavendish  |         |         |         |         |         |         |         |         |         |       |       |
| CAR               |         |         |         |         |         |         |         |         |         |       |       |
| Abra              |         | •••     | •••     | •••     | •••     |         |         |         |         |       | •••   |
| Apayao            |         | •••     | •••     |         |         |         |         |         |         |       | •••   |
| Benguet           |         |         |         |         |         |         |         |         |         |       |       |
| lfugao            |         | •••     | •••     | •••     | •••     |         |         |         |         |       | •••   |
| Kalinga           |         | •••     | •••     | •••     | •••     |         |         | •••     |         |       | •••   |
| Mountain Province |         |         |         |         |         |         |         |         |         |       |       |
| Banana Lakatan    |         |         |         |         |         |         |         |         |         |       |       |
| CAR               | 975.0   | 968.0   | 959.0   | 965.0   | 1,004.0 | 1,142.0 | 954.0   | 981.0   | 949.0   | 373.0 | 385.5 |
| Abra              | 55.0    | 54.0    | 54.0    | 54.0    | 54.0    | 55.0    | 55.0    | 55.0    | 55.0    | 55.0  | 55.0  |
| Apayao            | 750.0   | 750.0   | 750.0   | 760.0   | 800.0   | 946.0   | 760.0   | 790.0   | 760.0   | 185.0 | 203.5 |
| Benguet           | 58.0    | 55.0    | 54.0    | 53.0    | 51.0    | 51.0    | 51.0    | 48.0    | 47.0    | 46.0  | 46.0  |
| Ifugao            | 32.0    | 30.0    | 30.0    | 27.0    | 27.0    | 24.0    | 22.0    | 22.0    | 23.0    | 23.0  | 21.0  |
| Kalinga           | 75.0    | 75.0    | 69.0    | 69.0    | 70.0    | 65.0    | 65.0    | 65.0    | 64.0    | 64.0  | 60.0  |
| Mountain Province | 5.0     | 4.0     | 2.0     | 2.0     | 2.0     | 1.0     | 1.0     | 1.0     |         |       |       |
| Banana Saba       |         |         |         |         |         |         |         |         |         |       |       |
| CAR               | 1,336.0 | 1,304.0 | 1,328.0 | 1,318.0 | 1,317.0 | 1,353.0 | 1,332.0 | 1,352.0 | 1,322.0 | 862.7 | 864.9 |
| Abra              | 391.0   | 392.0   | 392.0   | 392.0   | 392.0   | 392.0   | 390.0   | 390.0   | 390.0   | 380.0 | 380.0 |
| Apayao            | 497.0   | 497.0   | 497.0   | 510.0   | 511.0   | 520.0   | 510.0   | 525.0   | 511.0   | 93.7  | 82.9  |
| Benguet           | 90.0    | 91.0    | 92.0    | 90.0    | 88.0    | 88.0    | 88.0    | 88.0    | 88.0    | 79.0  | 79.0  |
| lfugao            | 87.0    | 86.0    | 86.0    | 83.0    | 83.0    | 83.0    | 67.0    | 67.0    | 67.0    | 65.0  | 65.0  |
| Kalinga           | 68.0    | 68.0    | 62.0    | 62.0    | 72.0    | 78.0    | 85.0    | 90.0    | 90.0    | 97.0  | 97.0  |
| Mountain Province | 203.0   | 170.0   | 199.0   | 181.0   | 171.0   | 192.0   | 192.0   | 192.0   | 176.0   | 148.0 | 161.0 |
| Calamansi         |         |         |         |         |         |         |         |         |         |       |       |
| CAR               | 68.0    | 65.0    | 64.0    | 65.0    | 67.0    | 69.0    | 73.4    | 75.0    | 72.5    | 73.5  | 71.2  |
| Abra              | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0  | 11.0  |
| Apayao            | 18.0    | 18.0    | 18.0    | 18.0    | 20.0    | 20.0    | 25.0    | 25.0    | 22.5    | 23.5  | 21.2  |
| Benguet           | 16.0    | 13.0    | 12.0    | 13.0    | 13.0    | 13.0    | 13.0    | 13.0    | 13.0    | 13.0  | 13.0  |
| Ifugao            | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.4    | 11.0    | 11.0    | 11.0  | 11.0  |
| Kalinga           | 7.0     | 7.0     | 7.0     | 8.0     | 8.0     | 10.0    | 10.0    | 12.0    | 12.0    | 12.0  | 12.0  |
| Mountain Province | 5.0     | 5.0     | 5.0     | 4.0     | 4.0     | 4.0     | 3.0     | 3.0     | 3.0     | 3.0   | 3.0   |
| Durian            |         |         |         |         |         |         |         |         |         |       |       |
| CAR               |         | •••     | •••     | •••     | •••     |         |         |         |         |       | •••   |
| Abra              |         | •••     | •••     |         |         |         |         |         |         |       |       |
| Apayao            |         | •••     | •••     |         | •••     |         |         | •••     |         |       |       |
| Benguet           |         | •••     | •••     |         | •••     |         |         |         |         |       |       |
| Ifugao            | •••     |         |         |         |         |         |         |         |         | •••   |       |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                   | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Kalinga           | •••   |       |       |       |       |       |       |       |       |       |       |
| Mountain Province | •••   |       |       |       |       |       |       |       |       |       |       |
| Lanzones          |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 25.0  | 25.0  | 26.0  | 26.0  | 28.0  | 31.0  | 38.0  | 45.0  | 41.0  | 41.5  | 40.3  |
| Abra              |       |       |       |       |       |       |       |       |       |       |       |
| Apayao            | 20.0  | 20.0  | 20.0  | 20.0  | 22.0  | 25.0  | 30.0  | 30.0  | 26.0  | 26.5  | 25.3  |
| Benguet           | •••   |       |       |       |       |       |       | 5.0   | 5.0   | 5.0   | 5.0   |
| Ifugao            |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga           | 5.0   | 5.0   | 6.0   | 6.0   | 6.0   | 6.0   | 8.0   | 10.0  | 10.0  | 10.0  | 10.0  |
| Mountain Province |       |       |       |       |       |       |       |       |       |       |       |
| Mandarin          |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 178.0 | 178.0 | 177.0 | 177.0 | 185.0 | 197.0 | 204.0 | 213.0 | 206.0 | 195.5 | 188.5 |
| Abra              |       |       |       |       |       |       |       |       |       |       |       |
| Apayao            | 62.0  | 62.0  | 62.0  | 62.0  | 65.0  | 68.0  | 75.0  | 75.0  | 68.0  | 60.5  | 53.5  |
| Benguet           | 44.0  | 44.0  | 44.0  | 44.0  | 44.0  | 44.0  | 44.0  | 44.0  | 44.0  | 42.0  | 42.0  |
| lfugao            | 17.0  | 17.0  | 17.0  | 17.0  | 17.0  | 17.0  | 17.0  | 17.0  | 17.0  | 17.0  | 17.0  |
| Kalinga           | 35.0  | 35.0  | 35.0  | 35.0  | 35.0  | 35.0  | 35.0  | 38.0  | 38.0  | 38.0  | 38.0  |
| Mountain Province | 20.0  | 20.0  | 19.0  | 19.0  | 24.0  | 33.0  | 33.0  | 39.0  | 39.0  | 38.0  | 38.0  |
| Mango             |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 790.0 | 792.0 | 792.0 | 794.0 | 766.0 | 779.0 | 782.0 | 794.0 | 791.0 | 789.0 | 783.0 |
| Abra              | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 125.0 | 125.0 |
| Apayao            | 88.0  | 88.0  | 88.0  | 90.0  | 88.0  | 88.0  | 88.0  | 88.0  | 87.0  | 79.0  | 76.0  |
| Benguet           | 264.0 | 264.0 | 264.0 | 264.0 | 238.0 | 238.0 | 238.0 | 238.0 | 238.0 | 236.0 | 236.0 |
| Ifugao            | 114.0 | 116.0 | 116.0 | 116.0 | 116.0 | 116.0 | 115.0 | 119.0 | 119.0 | 119.0 | 119.0 |
| Kalinga           | 80.0  | 80.0  | 80.0  | 80.0  | 84.0  | 96.0  | 101.0 | 107.0 | 107.0 | 103.0 | 103.0 |
| Mountain Province | 134.0 | 134.0 | 134.0 | 134.0 | 130.0 | 131.0 | 130.0 | 132.0 | 130.0 | 127.0 | 124.0 |
| Mango Carabao     |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 697.0 | 699.0 | 699.0 | 699.0 | 669.0 | 677.0 | 680.0 | 690.0 | 686.0 | 690.0 | 683.9 |
| Abra              | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 110.0 | 125.0 | 125.0 |
| Apayao            | 78.0  | 78.0  | 78.0  | 78.0  | 78.0  | 78.0  | 78.0  | 78.0  | 76.0  | 69.0  | 65.9  |
| Benguet           | 264.0 | 264.0 | 264.0 | 264.0 | 238.0 | 238.0 | 238.0 | 238.0 | 238.0 | 236.0 | 236.0 |
| lfugao            | 106.0 | 108.0 | 108.0 | 108.0 | 108.0 | 108.0 | 107.0 | 110.0 | 110.0 | 110.0 | 110.0 |
| Kalinga           | 60.0  | 60.0  | 60.0  | 60.0  | 60.0  | 68.0  | 73.0  | 80.0  | 80.0  | 80.0  | 80.0  |
| Mountain Province | 79.0  | 79.0  | 79.0  | 79.0  | 75.0  | 75.0  | 74.0  | 74.0  | 72.0  | 70.0  | 67.0  |
| Mangosteen        |       |       |       |       |       |       |       |       |       |       |       |
| CAR               |       |       |       |       |       |       |       |       |       |       |       |
| Abra              |       |       |       |       |       |       |       |       |       |       |       |
| Apayao            |       |       |       |       |       |       |       |       |       |       |       |
| Benguet           |       |       |       |       |       |       |       |       |       |       |       |
| Ifugao            |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga           |       |       |       |       |       |       |       |       |       |       |       |
| Mountain Province | •••   |       |       |       |       |       |       |       |       |       |       |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                   | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Orange            | 2000  | 2007  | 2010  | 2011  | 2012  | 2015  | 2014  | 2015  | 2010  | 2017  | 2010  |
| CAR               | 179.0 | 179.0 | 178.0 | 174.0 | 170.0 | 156.0 | 151.0 | 145.2 | 136.5 | 130.0 | 129.0 |
| Abra              |       |       |       |       |       |       |       |       |       |       |       |
| Apayao            | 4.0   | 4.0   | 4.0   | 4.0   | 5.0   | 5.0   | 5.0   | 5.2   | 4.5   | 4.0   | 4.0   |
| Benguet           | 79.0  | 79.0  | 79.0  | 79.0  | 79.0  | 79.0  | 79.0  | 79.0  | 75.0  | 75.0  | 75.0  |
| Ifugao            | 27.0  | 27.0  | 27.0  | 27.0  | 27.0  | 27.0  | 27.0  | 27.0  | 27.0  | 25.0  | 24.0  |
| Kalinga           | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |
| Mountain Province | 54.0  | 54.0  | 53.0  | 49.0  | 44.0  | 30.0  | 25.0  | 19.0  | 15.0  | 11.0  | 11.0  |
| Papaya            |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 217.5 | 217.0 | 208.0 | 207.0 | 209.0 | 212.0 | 203.0 | 202.3 | 197.6 | 181.0 | 181.3 |
| Abra              | 61.0  | 61.0  | 61.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0  | 56.0  | 56.0  |
| Apayao            | 8.0   | 8.0   | 7.0   | 7.0   | 7.0   | 9.0   | 7.0   | 7.3   | 7.6   | 7.0   | 7.1   |
| Benguet           | 46.0  | 46.0  | 46.0  | 45.0  | 45.0  | 45.0  | 45.0  | 45.0  | 45.0  | 44.0  | 44.0  |
| Ifugao            | 15.5  | 15.0  | 15.0  | 15.0  | 16.0  | 16.0  | 16.0  | 16.0  | 16.0  | 16.0  | 16.0  |
| Kalinga           | 65.0  | 65.0  | 60.0  | 61.0  | 62.0  | 62.0  | 55.0  | 53.0  | 48.0  | 37.0  | 36.0  |
| Mountain Province | 22.0  | 22.0  | 19.0  | 19.0  | 19.0  | 20.0  | 20.0  | 21.0  | 21.0  | 21.0  | 22.2  |
| Pineapple         |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 115.0 | 117.0 | 117.0 | 114.0 | 117.0 | 111.0 | 109.0 | 109.4 | 107.0 | 92.0  | 93.9  |
| Abra              | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |
| Apayao            | 30.0  | 32.0  | 32.0  | 34.0  | 38.0  | 40.0  | 40.0  | 41.4  | 42.0  | 38.0  | 39.9  |
| Benguet           | 41.0  | 41.0  | 41.0  | 40.0  | 40.0  | 40.0  | 40.0  | 40.0  | 38.0  | 30.0  | 31.0  |
| Ifugao            | 11.0  | 11.0  | 11.0  | 11.0  | 11.0  | 11.0  | 12.0  | 12.0  | 12.0  | 12.0  | 12.0  |
| Kalinga           | 21.0  | 21.0  | 21.0  | 18.0  | 18.0  | 10.0  | 8.0   | 8.0   | 7.0   | 4.0   | 4.0   |
| Mountain Province | 9.0   | 9.0   | 9.0   | 8.0   | 7.0   | 7.0   | 6.0   | 5.0   | 5.0   | 5.0   | 4.0   |
| Rambutan          |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 31.0  | 31.0  | 32.0  | 32.0  | 46.0  | 51.0  | 60.0  | 66.0  | 59.0  | 60.0  | 55.4  |
| Abra              | •••   |       |       |       |       |       |       |       |       |       |       |
| Apayao            | 30.0  | 30.0  | 30.0  | 30.0  | 40.0  | 45.0  | 50.0  | 50.0  | 43.0  | 44.0  | 39.4  |
| Benguet           | •••   |       |       |       |       |       |       | 5.0   | 5.0   | 5.0   | 5.0   |
| Ifugao            |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga           | 1.0   | 1.0   | 2.0   | 2.0   | 6.0   | 6.0   | 10.0  | 11.0  | 11.0  | 11.0  | 11.0  |
| Mountain Province |       |       |       |       |       |       |       |       |       |       |       |
| Tamarind          |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 11.0  |
| Abra              | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
| Apayao            |       |       |       |       |       |       |       |       |       |       |       |
| Benguet           |       | •••   |       | •••   |       | •••   |       |       | •••   |       | •••   |
| lfugao            |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga           |       |       |       |       |       |       |       |       |       |       | 1.0   |
| Mountain Province | •••   | •••   |       |       |       | •••   |       |       | •••   |       |       |
| Watermelon        |       |       |       |       |       |       |       |       |       |       |       |
| CAR               | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.8  |
| Abra              | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares)

|                   | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Apayao            |         |         |         |         |         |         |         |         |         |         | 0.8     |
| Benguet           |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao            |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga           |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province |         |         |         |         |         |         |         |         |         |         |         |
| Asparagus         |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 0.5     |         |         |         |         |         |         |         |         |         |         |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         | •••     |         |         |         |         |         |         |         |         |
| Benguet           | 0.5     |         |         |         |         |         |         |         |         |         |         |
| Ifugao            |         |         | •••     | •••     |         |         |         |         |         |         |         |
| Kalinga           |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province |         |         |         |         |         |         |         |         |         |         |         |
| Ampalaya          |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 103.0   | 103.5   | 104.5   | 103.5   | 107.0   | 111.0   | 113.2   | 111.9   | 105.3   | 105.8   | 104.5   |
| Abra              | 69.0    | 69.0    | 69.0    | 69.0    | 69.0    | 69.0    | 69.0    | 69.0    | 69.0    | 69.0    | 69.0    |
| Apayao            | 4.0     | 3.5     | 4.0     | 3.0     | 7.0     | 11.0    | 13.0    | 13.2    | 10.1    | 11.2    | 11.1    |
| Benguet           |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao            | 13.0    | 13.0    | 12.0    | 12.0    | 12.0    | 12.0    | 12.2    | 12.2    | 12.2    | 12.2    | 12.2    |
| Kalinga           | 16.0    | 17.0    | 18.5    | 18.5    | 18.0    | 18.0    | 18.0    | 17.5    | 14.0    | 13.5    | 12.2    |
| Mountain Province | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     |         |         |         |         |
| Bottle gourd/Upo  |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 176.0   | 175.0   | 176.5   | 176.5   | 179.5   | 180.0   | 181.0   | 181.3   | 179.3   | 179.3   | 180.2   |
| Abra              | 156.0   | 156.0   | 156.0   | 156.0   | 156.0   | 156.0   | 156.0   | 156.0   | 156.0   | 156.0   | 156.0   |
| Apayao            | 1.0     | 1.0     | 1.0     | 1.0     | 4.0     | 4.5     | 5.5     | 5.7     | 4.2     | 4.6     | 4.5     |
| Benguet           |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao            | 19.0    | 18.0    | 17.0    | 17.0    | 17.0    | 17.0    | 17.0    | 17.0    | 16.5    | 16.5    | 17.0    |
| Kalinga           |         |         | 2.5     | 2.5     | 2.5     | 2.5     | 2.5     | 2.6     | 2.6     | 2.3     | 2.7     |
| Mountain Province |         |         |         |         |         |         |         |         |         |         |         |
| Broccoli          |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 158.0   | 159.0   | 158.0   | 163.0   | 166.0   | 166.0   | 166.0   | 157.0   | 150.0   | 170.0   | 148.3   |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         |         |         |         |         |         |         |         |         |         |
| Benguet           | 157.0   | 158.0   | 158.0   | 159.0   | 159.0   | 159.0   | 159.0   | 152.0   | 145.0   | 164.0   | 141.5   |
| Ifugao            |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga           |         |         | •••     |         |         |         |         |         |         |         |         |
| Mountain Province | 1.0     | 1.0     | •••     | 4.0     | 7.0     | 7.0     | 7.0     | 5.0     | 5.0     | 6.0     | 6.8     |
| Cabbage           |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 5,536.0 | 5,435.0 | 5,436.0 | 5,443.5 | 5,442.0 | 5,401.5 | 5,315.6 | 5,273.6 | 5,137.0 | 5,117.0 | 5,096.3 |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         |         |         |         |         |         |         |         |         |         |
| Benguet           | 4,366.0 | 4,361.0 | 4,438.0 | 4,440.0 | 4,425.0 | 4,385.0 | 4,291.0 | 4,281.0 | 4,166.0 | 4,106.0 | 4,030.0 |
| Ifugao            | 30.0    | 30.0    | 28.5    | 28.5    | 29.0    | 29.0    | 29.6    | 29.6    | 28.0    | 28.0    | 28.0    |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                   | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Kalinga           | 4.0     | 4.0     | 5.5     | 6.0     | 7.0     | 7.5     | 7.0     | 8.0     | 7.0     | 6.0     | 5.3     |
| Mountain Province | 1,136.0 | 1,040.0 | 964.0   | 969.0   | 981.0   | 980.0   | 988.0   | 955.0   | 936.0   | 977.0   | 1,033.1 |
| Carrots           |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 3,382.0 | 3,373.0 | 3,453.0 | 3,359.0 | 3,356.0 | 3,328.0 | 3,318.3 | 3,277.3 | 3,243.8 | 3,257.2 | 3,189.6 |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         |         |         |         |         |         |         |         |         |         |         |
| Benguet           | 2,800.0 | 2,795.0 | 2,926.0 | 2,927.0 | 2,938.0 | 2,913.0 | 2,903.0 | 2,889.0 | 2,876.0 | 2,889.0 | 2,840.0 |
| Ifugao            | 49.0    | 49.0    | 48.0    | 48.0    | 48.0    | 48.0    | 48.3    | 48.3    | 46.8    | 46.8    | 46.8    |
| Kalinga           |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province | 533.0   | 529.0   | 479.0   | 384.0   | 370.0   | 367.0   | 367.0   | 340.0   | 321.0   | 321.4   | 302.8   |
| Cassava           |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 307.0   | 312.0   | 316.6   | 312.6   | 489.0   | 632.0   | 654.8   | 659.0   | 877.4   | 1,171.0 | 1,098.5 |
| Abra              | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    |
| Apayao            | 79.0    | 85.0    | 85.0    | 84.0    | 290.0   | 438.0   | 443.0   | 445.0   | 445.0   | 447.5   | 445.1   |
| Benguet           | 152.0   | 151.0   | 156.0   | 153.0   | 121.0   | 112.0   | 112.0   | 112.0   | 111.0   | 108.0   | 107.0   |
| lfugao            | 18.0    | 18.0    | 17.6    | 17.6    | 18.0    | 19.0    | 35.8    | 31.0    | 266.1   | 562.1   | 502.1   |
| Kalinga           | 24.0    | 25.0    | 26.0    | 26.0    | 28.0    | 31.0    | 32.0    | 38.0    | 23.3    | 19.6    | 12.5    |
| Mountain Province | 18.0    | 17.0    | 16.0    | 16.0    | 16.0    | 16.0    | 16.0    | 17.0    | 16.0    | 17.8    | 15.8    |
| Cauliflower       |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 345.0   | 344.0   | 340.0   | 340.5   | 338.5   | 333.5   | 331.5   | 329.4   | 323.8   | 350.8   | 323.5   |
| Abra              |         |         | •••     |         |         |         |         |         | •••     | •••     |         |
| Apayao            |         |         | •••     |         |         |         |         | •••     | •••     | •••     |         |
| Benguet           | 342.0   | 341.0   | 337.0   | 338.0   | 337.0   | 332.0   | 330.0   | 328.0   | 323.0   | 350.0   | 323.0   |
| lfugao            |         | •••     | •••     | •••     |         |         |         | •••     | •••     | •••     |         |
| Kalinga           |         | •••     | •••     | •••     |         |         |         |         | •••     | •••     |         |
| Mountain Province | 3.0     | 3.0     | 3.0     | 2.5     | 1.5     | 1.5     | 1.5     | 1.4     | 0.8     | 0.8     | 0.5     |
| Eggplant          |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 135.0   | 134.0   | 133.8   | 132.8   | 137.0   | 142.0   | 147.0   | 147.3   | 154.9   | 156.6   | 158.8   |
| Abra              | 59.0    | 59.0    | 59.0    | 59.0    | 59.0    | 59.0    | 59.0    | 59.0    | 59.0    | 59.0    | 59.0    |
| Apayao            | 7.0     | 6.0     | 6.0     | 5.0     | 11.0    | 16.0    | 21.0    | 22.8    | 20.1    | 20.5    | 26.8    |
| Benguet           | 2.0     | 2.0     | 2.3     | 2.3     | 2.0     | 2.0     | 2.0     | 2.5     | 2.5     | 4.0     | 4.5     |
| lfugao            | 29.0    | 29.0    | 28.5    | 28.5    | 29.0    | 29.0    | 30.0    | 30.0    | 43.3    | 43.3    | 43.3    |
| Kalinga           | 33.0    | 34.0    | 34.0    | 34.0    | 33.0    | 33.0    | 32.0    | 31.0    | 28.0    | 28.0    | 23.5    |
| Mountain Province | 5.0     | 4.0     | 4.0     | 4.0     | 3.0     | 3.0     | 3.0     | 2.0     | 2.0     | 1.8     | 1.8     |
| Garlic            |         |         |         |         |         |         |         |         |         |         |         |
| CAR               | 13.5    | 13.0    | 12.4    | 8.0     | 8.0     | 7.0     | 7.0     | 6.5     | 6.0     | 6.0     | 2.0     |
| Abra              |         |         |         |         |         |         |         |         |         |         |         |
| Apayao            |         | •••     | •••     | •••     |         |         |         | •••     | •••     | •••     |         |
| Benguet           |         | •••     | •••     | •••     |         |         |         |         | •••     |         |         |
| lfugao            | 5.5     | 5.0     | 4.4     |         |         |         |         |         |         |         |         |
| Kalinga           | 8.0     | 8.0     | 8.0     | 8.0     | 8.0     | 7.0     | 7.0     | 6.5     | 6.0     | 6.0     | 2.0     |
| Mountain Province |         |         |         |         |         |         |         |         |         |         |         |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares)

|                    | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Ginger             | 2000  | 2007  | 2010  | 2011  | 2012  | 2015  | 2014  | 2015  | 2010  | 2017  | 2010  |
| CAR                | 154.0 | 154.5 | 150.5 | 144.8 | 142.5 | 139.3 | 136.8 | 135.8 | 130.6 | 132.6 | 127.2 |
| Abra               | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  |
| Apayao             | 12.0  | 13.0  | 13.0  | 11.8  | 9.0   | 8.8   | 9.5   | 9.5   | 9.0   | 8.8   | 8.8   |
| Benguet            | 46.0  | 45.0  | 41.0  | 39.0  | 39.0  | 39.0  | 36.0  | 34.0  | 31.0  | 33.0  | 25.0  |
| Ifugao             | 72.0  | 72.0  | 72.0  | 70.0  | 70.0  | 67.0  | 66.8  | 66.8  | 62.1  | 61.5  | 61.5  |
| Kalinga            | 4.0   | 4.5   | 4.5   | 4.5   | 5.0   | 5.0   | 5.0   | 6.0   | 9.0   | 9.9   | 10.0  |
| Mountain Province  | 2.0   | 2.0   | 2.0   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 4.0   |
| Greater yam/Ubi    |       |       |       |       |       |       |       |       |       |       |       |
| CAR                | 25.0  | 26.5  | 28.0  | 29.0  | 31.0  | 32.5  | 33.5  | 33.0  | 32.8  | 35.0  | 32.8  |
| Abra               |       |       |       |       |       |       |       |       |       |       |       |
| Apayao             | 1.0   | 2.0   | 2.0   | 3.0   | 3.0   | 4.0   | 4.0   | 4.0   | 4.0   | 4.3   | 3.8   |
| Benguet            | 22.0  | 22.5  | 24.0  | 24.0  | 24.0  | 24.0  | 24.0  | 23.0  | 23.0  | 25.0  | 24.0  |
| Ifugao             |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga            | 2.0   | 2.0   | 2.0   | 2.0   | 4.0   | 4.5   | 5.5   | 6.0   | 5.8   | 5.8   | 5.0   |
| Mountain Province  |       |       |       |       |       |       |       |       |       |       |       |
| Lady's finger/Okra |       |       |       |       |       |       |       |       |       |       |       |
| CAR                | 15.0  | 15.5  | 15.5  | 15.5  | 18.5  | 21.0  | 21.0  | 21.5  | 18.8  | 19.5  | 18.8  |
| Abra               | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   |
| Apayao             | 1.0   | 1.0   | 1.0   | 1.0   | 4.0   | 7.0   | 8.0   | 8.0   | 6.0   | 6.8   | 6.7   |
| Benguet            |       |       |       |       |       |       |       |       |       |       |       |
| lfugao             |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga            | 7.0   | 7.5   | 7.5   | 7.5   | 7.5   | 7.0   | 6.0   | 6.5   | 5.8   | 5.8   | 5.1   |
| Mountain Province  | •••   |       |       |       |       |       |       |       |       |       |       |
| Lettuce            |       |       |       |       |       |       |       |       |       |       |       |
| CAR                | 151.0 | 149.0 | 160.0 | 159.0 | 165.0 | 168.0 | 167.0 | 157.0 | 162.0 | 161.0 | 148.0 |
| Abra               |       |       |       |       |       |       |       |       |       |       |       |
| Apayao             |       |       |       |       |       |       |       |       |       |       |       |
| Benguet            | 132.0 | 131.0 | 143.0 | 143.0 | 148.0 | 148.0 | 145.0 | 136.0 | 138.0 | 141.0 | 127.0 |
| lfugao             |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga            |       |       |       |       |       |       |       |       |       |       |       |
| Mountain Province  | 19.0  | 18.0  | 17.0  | 16.0  | 17.0  | 20.0  | 22.0  | 21.0  | 24.0  | 20.0  | 21.0  |
| Mung bean/Mongo    |       |       |       |       |       |       |       |       |       |       |       |
| CAR                | 172.0 | 172.0 | 168.0 | 183.5 | 183.0 | 172.0 | 167.0 | 163.0 | 157.0 | 134.8 | 127.2 |
| Abra               |       |       |       | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |
| Apayao             | 8.0   | 8.0   | 6.0   | 6.5   | 7.0   | 7.0   | 8.0   | 8.0   | 9.0   | 6.8   | 6.2   |
| Benguet            |       |       |       |       |       |       |       |       |       |       |       |
| Ifugao             | 77.0  | 77.0  | 76.0  | 76.0  | 76.0  | 76.0  | 72.0  | 67.0  | 59.0  | 52.0  | 48.0  |
| Kalinga            | 44.0  | 43.0  | 43.0  | 43.0  | 43.0  | 44.0  | 44.0  | 45.0  | 47.0  | 34.0  | 31.0  |
| Mountain Province  | 43.0  | 44.0  | 43.0  | 43.0  | 42.0  | 30.0  | 28.0  | 28.0  | 27.0  | 27.0  | 27.0  |
| Onion              |       |       |       |       |       |       |       |       |       |       |       |
|                    |       |       |       |       |       |       |       |       |       |       |       |
| CAR                |       |       | •••   |       |       |       |       |       |       |       |       |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                      | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Apayao               |         |         |         |         |         |         |         |         |         |         |         |
| Benguet              |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao               |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga              |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province    | •••     |         |         |         |         |         |         |         |         |         |         |
| Peanut               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 254.0   | 253.0   | 254.0   | 252.0   | 249.0   | 249.5   | 239.4   | 229.0   | 224.4   | 211.6   | 209.5   |
| Abra                 |         |         |         |         |         |         |         |         |         |         |         |
| Apayao               | 6.0     | 6.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 4.5     | 4.0     | 4.4     |
| Benguet              | 22.0    | 22.0    | 26.0    | 26.0    | 24.0    | 24.0    | 23.0    | 23.0    | 23.0    | 23.0    | 21.0    |
| lfugao               | 96.0    | 94.0    | 92.0    | 92.0    | 92.0    | 92.0    | 92.4    | 92.0    | 92.1    | 92.1    | 92.1    |
| Kalinga              | 25.0    | 25.0    | 25.0    | 25.0    | 17.0    | 17.5    | 15.0    | 14.0    | 10.8    | 9.5     | 9.0     |
| Mountain Province    | 105.0   | 106.0   | 106.0   | 104.0   | 111.0   | 111.0   | 104.0   | 95.0    | 94.0    | 83.0    | 83.0    |
| Pechay, Chinese      |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 2,878.0 | 2,827.0 | 2,819.0 | 2,791.0 | 2,791.0 | 2,786.0 | 2,787.0 | 2,770.0 | 2,749.0 | 2,684.8 | 2,646.8 |
| Abra                 |         |         |         |         |         |         |         |         |         |         |         |
| Apayao               | •••     |         |         |         |         | •••     |         |         |         | 0.1     | 0.1     |
| Benguet              | 2,550.0 | 2,537.0 | 2,584.0 | 2,584.0 | 2,584.0 | 2,579.0 | 2,580.0 | 2,572.0 | 2,561.0 | 2,500.0 | 2,460.0 |
| lfugao               |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga              | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 1.0     |         |         |         |         |         |
| Mountain Province    | 326.0   | 288.0   | 233.0   | 205.0   | 205.0   | 206.0   | 207.0   | 198.0   | 188.0   | 184.7   | 186.7   |
| Pechay, Native       |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 563.5   | 559.9   | 535.6   | 528.8   | 530.3   | 525.8   | 522.5   | 506.6   | 501.3   | 467.7   | 437.1   |
| Abra                 | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    | 11.0    |
| Apayao               | 1.0     | 1.9     | 2.2     | 1.8     | 2.3     | 2.8     | 2.8     | 2.9     | 1.8     | 2.0     | 2.0     |
| Benguet              | 475.5   | 472.0   | 447.0   | 440.0   | 442.0   | 437.0   | 434.5   | 421.5   | 418.5   | 386.0   | 355.0   |
| Ifugao               | 23.0    | 23.0    | 22.4    | 23.0    | 24.0    | 24.0    | 24.2    | 24.2    | 25.0    | 24.0    | 24.0    |
| Kalinga              | 21.0    | 21.0    | 21.0    | 21.0    | 20.0    | 21.0    | 22.0    | 22.0    | 22.0    | 20.8    | 20.0    |
| Mountain Province    | 32.0    | 31.0    | 32.0    | 32.0    | 31.0    | 30.0    | 28.0    | 25.0    | 23.0    | 24.0    | 25.1    |
| Radish               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 131.0   | 130.0   | 135.0   | 133.0   | 130.0   | 128.0   | 132.0   | 128.0   | 125.2   | 130.0   | 118.1   |
| Abra                 |         |         |         |         |         |         |         |         |         |         |         |
| Apayao               |         |         |         |         |         |         |         |         |         |         |         |
| Benguet              | 120.0   | 120.0   | 125.0   | 123.0   | 120.0   | 118.0   | 123.0   | 120.0   | 118.2   | 123.0   | 110.0   |
| lfugao               |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga              |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province    | 11.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 9.0     | 8.0     | 7.0     | 7.0     | 8.1     |
| Snap beans/Habitchue | elas    |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 1,287.0 | 1,267.0 | 1,289.0 | 1,291.9 | 1,285.5 | 1,282.5 | 1,283.3 | 1,234.8 | 1,171.8 | 1,159.8 | 1,104.7 |
| Abra                 |         |         |         |         |         |         |         |         |         |         |         |
| Apayao               | 4.0     | 5.0     | 4.0     | 3.9     | 4.0     | 4.5     | 5.8     | 5.8     | 4.8     | 5.8     | 5.7     |
| Benguet              | 669.0   | 659.0   | 694.0   | 695.0   | 694.0   | 690.0   | 690.5   | 685.0   | 671.0   | 663.0   | 645.0   |
| Ifugao               | 405.0   | 395.0   | 392.0   | 392.0   | 392.0   | 392.0   | 393.0   | 378.0   | 364.0   | 362.0   | 347.0   |
|                      |         |         |         |         |         |         |         |         |         |         |         |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares) (continued)

|                     | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Kalinga             | 26.0    | 26.0    | 26.0    | 26.0    | 25.5    | 26.0    | 27.0    | 29.0    | 25.0    | 19.0    | 17.3    |
| Mountain Province   | 183.0   | 182.0   | 173.0   | 175.0   | 170.0   | 170.0   | 167.0   | 137.0   | 107.0   | 110.1   | 89.8    |
| Stringbeans         |         |         |         |         |         |         |         |         |         |         |         |
| CAR                 | 175.0   | 177.3   | 174.0   | 172.0   | 181.0   | 187.0   | 191.0   | 184.5   | 173.7   | 168.0   | 155.7   |
| Abra                | 25.0    | 25.0    | 25.0    | 25.0    | 25.0    | 25.0    | 25.0    | 25.0    | 25.0    | 25.0    | 25.0    |
| Apayao              | 7.0     | 7.3     | 7.0     | 6.0     | 11.0    | 15.0    | 20.0    | 20.5    | 12.7    | 13.0    | 13.3    |
| Benguet             |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao              | 108.0   | 108.0   | 106.0   | 106.0   | 106.0   | 106.0   | 104.0   | 96.0    | 93.0    | 87.0    | 77.0    |
| Kalinga             | 29.0    | 31.0    | 31.0    | 31.0    | 34.0    | 36.0    | 37.0    | 38.0    | 38.0    | 38.0    | 36.3    |
| Mountain Province   | 6.0     | 6.0     | 5.0     | 4.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 4.1     |
| Squash Fruit        |         |         |         |         |         |         |         |         |         |         |         |
| CAR                 | 242.5   | 243.0   | 247.0   | 238.0   | 252.0   | 272.0   | 274.5   | 274.8   | 252.5   | 253.6   | 251.2   |
| Abra                | 131.0   | 131.0   | 131.0   | 131.0   | 131.0   | 131.0   | 131.0   | 131.0   | 122.0   | 122.0   | 122.0   |
| Apayao              | 11.0    | 12.0    | 20.0    | 13.0    | 28.0    | 50.0    | 54.0    | 55.3    | 46.7    | 47.0    | 50.4    |
| Benguet             | 19.5    | 20.0    | 19.0    | 18.0    | 18.0    | 18.0    | 18.0    | 17.0    | 16.5    | 16.5    | 15.5    |
| lfugao              | 23.0    | 23.0    | 22.0    | 22.0    | 22.0    | 22.0    | 22.5    | 22.5    | 20.3    | 20.0    | 20.0    |
| Kalinga             | 19.0    | 19.0    | 19.0    | 19.0    | 17.0    | 15.0    | 13.0    | 13.0    | 12.0    | 11.7    | 11.5    |
| Mountain Province   | 39.0    | 38.0    | 36.0    | 35.0    | 36.0    | 36.0    | 36.0    | 36.0    | 35.0    | 36.4    | 31.8    |
| <b>Sweet Potato</b> |         |         |         |         |         |         |         |         |         |         |         |
| CAR                 | 3,165.0 | 3,167.0 | 3,033.5 | 3,018.0 | 3,069.0 | 3,049.0 | 3,021.0 | 2,891.8 | 2,806.2 | 2,599.6 | 2,194.2 |
| Abra                | 63.0    | 63.0    | 63.0    | 63.0    | 63.0    | 63.0    | 63.0    | 63.0    | 63.0    | 63.0    | 63.0    |
| Apayao              | 12.0    | 15.0    | 15.0    | 15.0    | 18.0    | 21.0    | 27.0    | 28.8    | 23.2    | 21.0    | 24.5    |
| Benguet             | 870.0   | 871.0   | 791.7   | 792.0   | 769.0   | 759.0   | 763.0   | 761.0   | 748.0   | 719.0   | 670.0   |
| lfugao              | 1,721.0 | 1,712.0 | 1,712.0 | 1,712.0 | 1,712.0 | 1,712.0 | 1,698.0 | 1,600.0 | 1,573.0 | 1,443.0 | 1,175.0 |
| Kalinga             | 50.0    | 51.0    | 52.8    | 53.0    | 55.0    | 55.0    | 58.0    | 58.0    | 57.0    | 42.8    | 42.0    |
| Mountain Province   | 449.0   | 455.0   | 399.0   | 383.0   | 452.0   | 439.0   | 412.0   | 381.0   | 342.0   | 310.8   | 219.6   |
| Swamp cabbage/Kang  | kong    |         |         |         |         |         |         |         |         |         |         |
| CAR                 | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 6.5     | 5.8     | 5.8     |
| Abra                | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     |
| Apayao              |         |         |         |         |         |         |         |         |         |         |         |
| Benguet             |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao              |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga             | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 3.5     | 2.8     | 2.8     |
| Mountain Province   |         |         |         |         |         |         |         |         |         |         |         |
| Taro/Gabi           |         |         |         |         |         |         |         |         |         |         |         |
| CAR                 | 446.0   | 449.0   | 421.0   | 419.7   | 425.0   | 434.0   | 441.2   | 440.2   | 436.4   | 437.0   | 420.1   |
| Abra                | 19.0    | 19.0    | 19.0    | 19.0    | 19.0    | 19.0    | 19.0    | 19.0    | 19.0    | 19.0    | 19.0    |
| Apayao              | 8.0     | 11.0    | 12.0    | 12.2    | 15.0    | 22.0    | 27.0    | 27.0    | 25.8    | 26.0    | 26.2    |
| Benguet             | 376.0   | 377.0   | 349.0   | 348.5   | 349.0   | 349.0   | 349.0   | 348.0   | 345.5   | 346.0   | 332.0   |
| Ifugao              | 27.0    | 27.0    | 26.0    | 26.0    | 26.0    | 26.0    | 26.2    | 26.2    | 25.6    | 25.6    | 25.4    |
| Kalinga             | 12.0    | 12.0    | 12.0    | 12.0    | 15.0    | 17.0    | 19.0    | 19.0    | 19.5    | 19.4    | 16.5    |
| Mountain Province   | 4.0     | 3.0     | 3.0     | 2.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     |
| Tomato              |         |         |         |         |         |         |         |         |         |         |         |

Table 2.9 Other Crops: Area Planted/Harvested by Crop and Geolocation 2008 to 2018 (in hectares)

(continued)

|                    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CAR                | 379.0   | 366.0   | 356.9   | 359.8   | 359.0   | 355.0   | 356.1   | 342.1   | 335.8   | 335.0   | 301.2   |
| Abra               | 53.0    | 53.0    | 53.0    | 53.0    | 53.0    | 53.0    | 53.0    | 53.0    | 53.0    | 50.0    | 50.0    |
| Apayao             | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.0     | 2.3     | 2.5     | 2.3     |
| Benguet            | 240.0   | 238.0   | 229.1   | 230.0   | 230.0   | 229.0   | 231.0   | 229.5   | 223.5   | 203.0   | 163.0   |
| Ifugao             | 4.0     | 4.0     | 3.8     | 3.8     | 4.0     | 4.0     | 4.1     | 6.6     | 11.0    | 16.0    | 16.0    |
| Kalinga            | 22.0    | 22.0    | 21.0    | 21.0    | 19.0    | 16.0    | 16.0    | 14.0    | 12.0    | 12.0    | 13.5    |
| Mountain Province  | 58.0    | 47.0    | 48.0    | 50.0    | 51.0    | 51.0    | 50.0    | 37.0    | 34.0    | 51.5    | 56.5    |
| White/Irish Potato |         |         |         |         |         |         |         |         |         |         |         |
| CAR                | 5,932.0 | 5,824.0 | 6,068.5 | 6,115.5 | 6,083.0 | 5,892.0 | 5,884.9 | 5,893.5 | 5,787.6 | 5,819.8 | 5,587.1 |
| Abra               |         | •••     | •••     |         |         |         |         |         | •••     |         |         |
| Apayao             |         |         |         |         |         |         |         |         |         |         |         |
| Benguet            | 4,844.0 | 4,833.0 | 5,174.0 | 5,176.0 | 5,157.0 | 4,969.0 | 4,969.0 | 5,014.0 | 4,981.0 | 4,997.0 | 4,795.0 |
| Ifugao             | 10.0    | 10.0    | 9.5     | 9.5     | 10.0    | 10.0    | 9.9     | 9.5     | 8.6     | 7.5     | 6.3     |
| Kalinga            |         |         |         |         |         |         |         |         |         |         |         |
| Mountain Province  | 1,078.0 | 981.0   | 885.0   | 930.0   | 916.0   | 913.0   | 906.0   | 870.0   | 798.0   | 815.3   | 785.9   |

Table 2.10
Palay and Corn: Volume of Production by Ecosystem/Croptype and Geolocation 2008 to 2018 (in metric tons)

(continued)

|                      | 2008    | 2009    | 2010             | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|----------------------|---------|---------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Palay                | 2006    | 2009    | 2010             | 2011    | 2012    | 2013    | 2014    | 2015    | 2010    | 2017    | 2010    |
| Palay<br>CAR         | 445,156 | 431,656 | 400,415          | 428,949 | 453,461 | 460,170 | 452,609 | 400,911 | 382,848 | 445,006 | 391,105 |
| Abra                 | 75,528  | 76,302  |                  | 80,428  | 82,333  | 79,444  | 75,500  | 66,716  | 65,159  | 69,477  | 62,120  |
|                      | 101,632 | 100,379 | 77,611<br>96,689 | 98,489  | 105,891 | 106,741 | 101,158 | 96,453  | 86,430  | 103,335 | 76,346  |
| Apayao               | •       |         |                  | •       |         |         | •       |         |         |         |         |
| Benguet              | 17,142  | 16,221  | 15,780           | 15,790  | 16,696  | 17,491  | 17,355  | 18,144  | 18,145  | 20,276  | 19,918  |
| Ifugao               | 63,546  | 64,036  | 60,350           | 61,903  | 62,465  | 63,379  | 63,076  | 63,362  | 60,866  | 62,387  | 60,077  |
| Kalinga              | 168,117 | 156,187 | 134,266          | 155,895 | 168,854 | 174,012 | 176,529 | 41,094  | 137,784 | 173,292 | 156,269 |
| Mountain<br>Province | 19,191  | 18,531  | 15,719           | 16,444  | 17,222  | 19,103  | 18,991  | 15,142  | 14,464  | 16,239  | 16,376  |
| Irrigated Palay      |         |         |                  |         |         |         |         |         |         |         |         |
| CAR                  | 372,282 | 362,841 | 335,343          | 364,657 | 385,958 | 394,671 | 389,732 | 345,847 | 334,494 | 389,558 | 349,285 |
| Abra                 | 48,585  | 50,676  | 51,656           | 53,373  | 55,219  | 54,639  | 52,363  | 47,320  | 44,332  | 48,119  | 42,945  |
| Apayao               | 69,045  | 69,747  | 67,715           | 71,224  | 76,320  | 77,589  | 72,925  | 71,204  | 68,741  | 81,192  | 62,938  |
| Benguet              | 15,112  | 14,370  | 13,843           | 14,038  | 14,560  | 15,295  | 15,201  | 15,905  | 15,588  | 17,816  | 17,590  |
| lfugao               | 61,678  | 62,184  | 58,482           | 60,202  | 60,660  | 61,566  | 61,263  | 61,551  | 59,102  | 60,591  | 58,384  |
| Kalinga              | 161,424 | 149,750 | 129,611          | 151,020 | 163,961 | 168,616 | 171,213 | 136,463 | 133,565 | 167,849 | 153,133 |
| Mountain<br>Province | 16,438  | 16,114  | 14,036           | 14,800  | 15,238  | 16,966  | 16,767  | 13,404  | 13,166  | 13,991  | 14,296  |
| Rainfed Palay        |         |         |                  |         |         |         |         |         |         |         |         |
| CAR                  | 72,874  | 68,815  | 65,072           | 64,292  | 67,503  | 65,499  | 62,877  | 55,064  | 48,354  | 55,448  | 41,820  |
| Abra                 | 26,943  | 25,626  | 25,955           | 27,055  | 27,114  | 24,805  | 23,137  | 19,396  | 20,827  | 21,358  | 19,175  |
| Apayao               | 32,587  | 30,632  | 28,974           | 27,265  | 29,571  | 29,152  | 28,233  | 25,249  | 17,689  | 22,143  | 13,408  |
| Benguet              | 2,030   | 1,851   | 1,937            | 1,752   | 2,136   | 2,196   | 2,154   | 2,239   | 2,557   | 2,460   | 2,328   |
| Ifugao               | 1,868   | 1,852   | 1,868            | 1,701   | 1,805   | 1,813   | 1,813   | 1,811   | 1,764   | 1,796   | 1,693   |
| Kalinga              | 6,693   | 6,437   | 4,655            | 4,875   | 4,893   | 5,396   | 5,316   | 4,631   | 4,219   | 5,443   | 3,136   |
| Mountain<br>Province | 2,753   | 2,417   | 1,683            | 1,644   | 1,984   | 2,137   | 2,224   | 1,738   | 1,298   | 2,248   | 2,080   |
| Corn                 |         |         |                  |         |         |         |         |         |         |         |         |
| CAR                  | 196,421 | 201,773 | 172,195          | 218,788 | 225,135 | 242,074 | 244,576 | 237,823 | 199,355 | 242,850 | 207,439 |
| Abra                 | 9,238   | 11,737  | 12,102           | 15,841  | 16,139  | 16,153  | 16,618  | 16,170  | 16,152  | 16,262  | 16,167  |
| Apayao               | 17,162  | 17,845  | 16,666           | 22,946  | 26,001  | 32,748  | 32,211  | 31,885  | 29,323  | 35,986  | 26,281  |
| Benguet              | 38      | 38      | 38               | 34      | 34      | 36      | 37      | 37      | 42      | 40      | 348     |
| Ifugao               | 88,938  | 83,511  | 84,285           | 93,847  | 97,183  | 106,449 | 119,409 | 111,658 | 93,265  | 103,540 | 98,072  |
| Kalinga              | 55,207  | 65,193  | 46,112           | 65,505  | 64,166  | 64,944  | 54,975  | 53,771  | 44,145  | 63,076  | 43,346  |
| Mountain<br>Province | 25,838  | 23,449  | 12,992           | 20,615  | 21,612  | 21,744  | 21,326  | 24,302  | 16,428  | 23,946  | 23,225  |
| White Corn           |         |         |                  |         |         |         |         |         |         |         |         |
| CAR                  | 15,224  | 16,688  | 15,677           | 20,147  | 20,345  | 20,256  | 20,680  | 19,871  | 17,993  | 17,888  | 16,673  |
| Abra                 | 8,479   | 10,850  | 11,193           | 14,937  | 15,260  | 15,278  | 15,733  | 15,333  | 15,287  | 15,397  | 15,302  |
| Apayao               | 1,637   | 1,373   | 835              | 1,351   | 1,057   | 997     | 918     | 922     | 840     | 984     | 706     |
| Benguet              | 33      | 33      | 33               | 31      | 31      | 33      | 34      | 34      | 30      | 30      | 19      |
| Ifugao               | 2,501   | 1,773   | 1,527            | 1,395   | 1,765   | 1,747   | 1,830   | 1,768   | 760     | 222     | 280     |
| Kalinga              | 2,269   | 2,388   | 1,802            | 2,184   | 1,933   | 1,912   | 1,860   | 1,724   | 1,016   | 1,068   | 323     |
| Mountain<br>Province | 305     | 271     | 287              | 249     | 299     | 289     | 305     | 90      | 60      | 187     | 43      |

**Table 2.10** Palay and Corn: Volume of Production by Ecosystem/Croptype and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Yellow Corn          |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 181,197 | 185,085 | 156,518 | 198,641 | 204,790 | 221,818 | 223,896 | 217,952 | 181,362 | 224,962 | 190,766 |
| Abra                 | 759     | 887     | 909     | 904     | 879     | 875     | 885     | 837     | 865     | 865     | 865     |
| Apayao               | 15,525  | 16,472  | 15,831  | 21,595  | 24,944  | 31,751  | 31,293  | 30,963  | 28,483  | 35,002  | 25,575  |
| Benguet              | 5       | 5       | 5       | 3       | 3       | 3       | 3       | 3       | 12      | 10      | 329     |
| Ifugao               | 86,437  | 81,738  | 82,758  | 92,452  | 95,418  | 104,702 | 117,579 | 109,890 | 92,505  | 103,318 | 97,792  |
| Kalinga              | 52,938  | 62,805  | 44,310  | 63,321  | 62,233  | 63,032  | 53,115  | 52,047  | 43,129  | 62,008  | 43,023  |
| Mountain<br>Province | 25,533  | 23,178  | 12,705  | 20,366  | 21,313  | 21,455  | 21,021  | 24,212  | 16,368  | 23,759  | 23,182  |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008         | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|----------------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Abaca                | 2000         | 2007    | 2010    | 2011    | 2012    | 2013    | 2014    | 2013    | 2010    | 2017    | 2010    |
| CAR                  | 13.1         | 13.3    | 13.4    | 13.1    | 13.2    | 13.0    | 11.2    | •••     |         |         |         |
| Abra                 |              |         |         |         |         |         |         |         | •••     |         | •••     |
| Apayao               | •••          | •••     | ***     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     |
| Benguet              | •••          | •••     | •••     | •••     | •••     | •••     |         | •••     | •••     |         | ***     |
| Ifugao               | •••          | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     |         |
| Kalinga              |              |         | •••     |         |         |         | •••     |         |         | •••     |         |
| Mountain<br>Province | 13.1         | 13.3    | 13.4    | 13.1    | 13.2    | 13.0    | 11.2    |         |         |         |         |
| Cacao                |              |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 13.4         | 14.0    | 13.8    | 14.0    | 14.5    | 21.1    | 27.7    | 31.0    | 30.9    | 22.4    | 27.2    |
| Abra                 |              |         |         |         |         |         |         |         |         |         |         |
| Apayao               | 7.3          | 7.7     | 7.6     | 7.3     | 7.4     | 12.8    | 19.6    | 21.9    | 21.3    | 15.2    | 16.1    |
| Benguet              | 4.1          | 4.1     | 4.0     | 3.9     | 3.4     | 3.2     | 3.0     | 3.2     | 3.1     | 3.2     | 3.3     |
| Ifugao               |              |         |         |         |         |         |         |         |         |         |         |
| Kalinga              | 2.0          | 2.2     | 2.2     | 2.9     | 3.7     | 5.1     | 5.1     | 6.0     | 5.5     | 2.9     | 6.4     |
| Mountain<br>Province |              |         |         |         |         |         |         |         | 1.0     | 1.1     | 1.4     |
| Cashew (ripe f       | ruit with nu | t)      |         |         |         |         |         |         |         |         |         |
| CAR                  | 1.3          | 1.3     | 1.3     | 1.3     | 1.3     | 1.2     | 1.0     | 0.9     | 0.2     |         |         |
| Abra                 |              |         |         |         |         |         |         |         |         |         |         |
| Apayao               |              | •••     |         |         |         |         |         | •••     |         |         |         |
| Benguet              |              | •••     |         |         |         |         |         |         |         |         |         |
| Ifugao               |              |         |         |         |         |         |         |         |         |         |         |
| Kalinga              | 1.3          | 1.3     | 1.3     | 1.3     | 1.3     | 1.2     | 1.0     | 0.9     | 0.2     | •••     |         |
| Mountain<br>Province |              | •••     | •••     |         |         | •••     |         | •••     |         |         |         |
| Chrysanthemu         | ım           |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 1,268.7      | 1,326.9 | 1,360.9 | 1,358.0 | 1,401.4 | 1,419.6 | 1,364.4 | 1,323.0 | 1,186.2 | 1,283.0 | 1,348.5 |
| Abra                 |              |         |         |         |         |         |         |         |         |         |         |
| Apayao               |              |         |         |         |         |         |         |         |         |         |         |
| Benguet              | 1,268.7      | 1,326.9 | 1,360.9 | 1,358.0 | 1,401.4 | 1,419.6 | 1,364.4 | 1,320.8 | 1,186.1 | 1,283.0 | 1,348.5 |
| Ifugao               |              | •••     |         |         |         |         |         |         |         |         |         |
| Kalinga              |              | •••     |         | •••     | •••     |         |         | 2.2     | 0.1     |         | •••     |
| Mountain<br>Province |              |         |         |         |         |         |         |         |         |         |         |
| Coconut (with        | husk)        |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 865.8        | 906.1   | 914.0   | 907.2   | 952.2   | 1,078.8 | 1,173.0 | 1,165.1 | 1,037.4 | 981.4   | 942.3   |
| Abra                 | 185.3        | 189.0   | 191.9   | 190.5   | 202.8   | 212.8   | 220.0   | 214.9   | 208.3   | 203.9   | 191.6   |
| Apayao               | 235.6        | 255.2   | 254.9   | 248.5   | 267.7   | 324.5   | 374.8   | 393.1   | 347.7   | 324.7   | 295.6   |
| Benguet              | 15.6         | 15.5    | 15.1    | 15.4    | 15.1    | 15.2    | 15.3    | 15.0    | 14.8    | 15.1    | 15.0    |
| Ifugao               | 75.6         | 80.2    | 86.8    | 90.3    | 94.7    | 104.0   | 131.1   | 135.3   | 141.7   | 148.7   | 154.5   |
| Kalinga              | 191.2        | 192.9   | 192.2   | 190.4   | 195.8   | 243.0   | 257.0   | 238.1   | 160.4   | 134.5   | 134.4   |
| Mountain<br>Province | 162.5        | 173.3   | 173.1   | 172.3   | 176.2   | 179.4   | 174.7   | 168.6   | 164.5   | 154.6   | 151.2   |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2000         | 2000    | 2011    | 2000    | 2015    | 2015    | 2015    | 2015    | 2000    | 2015    | 2015    |
|----------------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                      | 2008         | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
| Coffee (dried l      | -            |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 5,949.5      | 5,700.3 | 5,608.1 | 5,627.1 | 5,673.2 | 5,464.8 | 5,251.5 | 5,210.0 | 3,735.9 | 1,886.2 | 2,199.0 |
| Abra                 | 55.1         | 54.4    | 54.4    | 54.1    | 53.5    | 52.4    | 51.5    | 52.4    | 54.7    | 56.3    | 58.9    |
| Apayao               | 15.7         | 16.0    | 14.4    | 13.4    | 12.8    | 16.0    | 19.9    | 23.0    | 23.2    | 17.1    | 16.7    |
| Benguet              | 477.7        | 484.5   | 487.6   | 486.6   | 491.7   | 501.0   | 535.6   | 540.8   | 523.3   | 520.8   | 515.1   |
| lfugao               | 1,103.4      | 1,091.4 | 1,075.8 | 1,053.8 | 1,061.4 | 1,052.4 | 1,029.4 | 985.4   | 943.4   | 893.6   | 722.8   |
| Kalinga              | 3,977.0      | 3,852.0 | 3,803.0 | 3,857.2 | 3,898.5 | 3,698.5 | 3,470.0 | 3,480.4 | 2,080.0 | 311.2   | 801.2   |
| Mountain<br>Province | 320.7        | 202.0   | 173.0   | 162.2   | 155.4   | 144.6   | 145.1   | 128.1   | 111.3   | 87.1    | 84.3    |
| Coffee Arabica       | dried beri   | ies)    |         |         |         |         |         |         |         |         |         |
| CAR                  | 535.3        | 547.6   | 550.3   | 549.8   | 555.1   | 548.3   | 578.6   | 582.1   | 531.3   | 521.4   | 518.6   |
| Abra                 | 24.8         | 24.5    | 24.5    | 24.6    | 24.4    | 23.9    | 23.2    | 23.2    | 24.8    | 25.4    | 27.3    |
| Apayao               | 5.5          | 5.7     | 5.1     | 4.5     | 4.3     | 6.5     | 6.0     | 5.7     | 5.6     | 3.6     | 3.5     |
| Benguet              | 388.0        | 395.2   | 399.1   | 397.8   | 403.0   | 411.0   | 445.3   | 451.7   | 437.6   | 436.0   | 431.0   |
| lfugao               | 16.4         | 17.6    | 18.6    | 16.7    | 16.9    | 16.5    | 15.4    | 15.0    | 13.7    | 12.4    | 11.1    |
| Kalinga              | 59.0         | 58.0    | 57.0    | 58.2    | 56.5    | 40.0    | 36.0    | 35.0    |         |         |         |
| Mountain<br>Province | 41.7         | 46.7    | 46.1    | 48.2    | 50.0    | 50.6    | 52.6    | 51.6    | 49.6    | 44.1    | 45.7    |
| Coffee Excelsa       | (dried berr  | ies)    |         |         |         |         |         |         |         |         |         |
| CAR                  | 89.9         | 87.2    | 84.6    | 86.4    | 88.4    | 84.1    | 78.6    | 77.5    | 58.0    | 31.3    | 28.2    |
| Abra                 | 6.8          | 6.7     | 6.6     | 6.6     | 6.5     | 6.4     | 6.4     | 6.9     | 7.2     | 7.4     | 7.5     |
| Apayao               | 1.6          | 1.6     | 1.5     | 1.9     | 1.7     | 2.0     | 1.8     | 1.7     | 1.7     | 0.9     | 0.9     |
| Benguet              | 23.5         | 23.2    | 22.5    | 22.2    | 21.8    | 22.1    | 21.4    | 20.1    | 19.2    | 18.8    | 18.6    |
| Ifugao               |              |         |         |         |         |         |         |         |         |         |         |
| Kalinga              | 56.0         | 54.0    | 53.0    | 55.0    | 58.0    | 53.5    | 49.0    | 48.8    | 30.0    | 4.2     | 1.2     |
| Mountain<br>Province | 2.1          | 1.7     | 1.0     | 0.9     | 0.3     |         |         |         |         |         |         |
| Coffee Liberic       | a (dried ber | ries)   |         |         |         |         |         |         |         |         |         |
| CAR                  | 17.7         | 17.5    | 17.6    | 17.3    | 16.9    | 16.6    | 16.4    | 16.2    | 16.1    | 16.5    | 16.9    |
| Abra                 | 17.7         | 17.5    | 17.6    | 17.3    | 16.9    | 16.6    | 16.4    | 16.2    | 16.1    | 16.5    | 16.9    |
| Apayao               | •••          | •••     |         | •••     | •••     | •••     | •••     | •••     |         |         | •••     |
| Benguet              | •••          | •••     |         | •••     | •••     | •••     | •••     | •••     |         |         | •••     |
| Ifugao               | •••          | •••     |         | •••     |         | •••     |         |         |         |         | •••     |
| Kalinga              |              |         |         | •••     | •••     | •••     | •••     | •••     |         |         |         |
| Mountain<br>Province |              |         |         |         |         |         |         |         |         |         |         |
| Coffee Robust        | a (dried ber | ries)   |         |         |         |         |         |         |         |         |         |
| CAR                  | 5,114.0      | 4,862.3 | ,772.1  | 4,973.6 | 5,012.8 | 4,815.9 | 4,577.9 | 4,534.3 | 3,130.5 | 1,316.9 | 1,635.3 |
| Abra                 | 5.9          | 5.8     | 5.7     | 5.7     | 5.6     | 5.5     | 5.5     | 6.1     | 6.7     | 7.0     | 7.1     |
| Apayao               | 8.0          | 8.1     | 7.3     | 7.0     | 6.8     | 7.5     | 12.1    | 15.6    | 16.0    | 12.6    | 12.4    |
| Benguet              | 66.2         | 66.1    | 66.0    | 66.7    | 66.9    | 67.9    | 68.9    | 69.1    | 66.4    | 66.0    | 65.5    |
| Ifugao               | 1,087.0      | 1,073.9 | 1,057.2 | 1,037.2 | 1,044.5 | 1,035.9 | 1,014.0 | 970.5   | 929.7   | 881.2   | 711.7   |
| Kalinga              | 3,670.0      | 3,555.0 | 3,510.0 | 3,744.0 | 3,784.0 | 3,605.0 | 3,385.0 | 3,396.6 | 2,050.0 | 307.0   | 800.0   |
| Mountain<br>Province | 276.9        | 153.5   | 125.9   | 113.1   | 105.0   | 94.0    | 92.5    | 76.5    | 61.7    | 43.1    | 38.6    |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008          | 2009    | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|----------------------|---------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Cotton               |               |         |       |       |       |       |       |       |       |       |       |
| CAR                  | •••           | •••     |       |       |       |       |       |       |       | •••   | •••   |
| Abra                 | •••           | ***     |       |       |       |       |       |       |       | •••   |       |
| Apayao               |               |         |       |       |       |       |       |       |       | •••   |       |
| Benguet              |               |         |       |       |       |       |       |       |       |       |       |
| Ifugao               |               |         |       |       |       |       |       |       |       |       |       |
| Kalinga              | •••           | •••     | •••   |       |       |       |       |       |       | •••   | •••   |
| Mountain<br>Province |               |         |       |       |       |       |       |       |       |       |       |
| Gladiola             |               |         |       |       |       |       |       |       |       |       |       |
| CAR                  | 1,064.3       | 1,011.9 | 972.3 | 894.0 | 832.9 | 739.6 | 515.6 | 406.2 | 294.3 | 275.5 | 216.3 |
| Abra                 | •••           | •••     | •••   |       |       |       |       |       |       |       | •••   |
| Apayao               |               | •••     |       |       |       |       |       |       |       |       |       |
| Benguet              | 1,064.3       | 1,011.9 | 972.3 | 894.0 | 832.9 | 739.6 | 515.6 | 406.2 | 294.3 | 275.5 | 216.3 |
| Ifugao               |               |         |       |       |       |       |       |       |       | •••   |       |
| Kalinga              |               |         |       |       |       |       |       |       |       |       |       |
| Mountain<br>Province |               |         |       |       |       |       |       |       |       |       |       |
| Oil Palm (fresh      | n fruit bunch | 1)      |       |       |       |       |       |       |       |       |       |
| CAR                  | •••           | ***     | •••   |       |       | •••   | •••   |       |       | •••   |       |
| Abra                 | •••           | •••     | •••   |       |       | •••   | •••   |       | •••   | •••   |       |
| Apayao               |               |         |       |       |       |       |       |       |       | •••   |       |
| Benguet              |               |         |       |       |       |       |       |       |       |       |       |
| Ifugao               |               |         |       |       |       |       |       |       |       |       |       |
| Kalinga              |               |         |       |       |       |       |       |       |       |       |       |
| Mountain<br>Province |               |         |       |       |       |       |       |       |       |       |       |
| Orchids              |               |         |       |       |       |       |       |       |       |       |       |
| CAR                  | •••           | •••     | •••   |       |       |       |       |       |       | •••   |       |
| Abra                 |               |         |       |       |       |       |       |       |       | •••   |       |
| Apayao               |               |         |       |       |       |       |       |       |       | •••   |       |
| Benguet              |               |         |       |       |       |       |       |       |       |       |       |
| Ifugao               | •••           | •••     |       |       |       |       |       |       |       | •••   |       |
| Kalinga              |               |         |       |       |       |       |       |       |       |       |       |
| Mountain<br>Province |               |         |       |       |       |       |       |       |       |       |       |
| Pili Nut (with s     | shell)        |         |       |       |       |       |       |       |       |       |       |
| CAR                  | •••           | ***     | •••   |       |       | •••   | •••   |       |       | •••   |       |
| Abra                 | •••           | •••     |       |       |       | •••   | •••   |       |       | •••   |       |
| Apayao               |               |         |       |       |       |       |       |       |       | •••   |       |
| Benguet              |               |         |       |       |       |       |       |       |       | •••   |       |
| Ifugao               | •••           | ***     | •••   |       |       |       |       |       |       | •••   |       |
| Kalinga              | •••           | •••     | •••   |       |       | •••   | •••   | •••   | •••   | •••   |       |
| Mountain<br>Province | •••           |         |       |       |       |       |       | ***   |       |       |       |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008    | 2009     | 2010    | 2011    | 2012    | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     |
|----------------------|---------|----------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| Roses                |         |          |         |         |         |          |          |          |          |          |          |
| CAR                  | 1,433.6 | 1,400.0  | 1,405.5 | 1,406.9 | 1,447.4 | 1,475.7  | 1,466.6  | 1,379.3  | 1,283.6  | 1,444.8  | 1,594.4  |
| Abra                 |         | •••      | •••     |         |         |          |          |          |          |          | •••      |
| Apayao               |         |          |         |         |         |          |          |          |          |          |          |
| Benguet              | 1,433.6 | 1,400.0  | 1,405.5 | 1,406.9 | 1,447.4 | 1,475.7  | 1,466.6  | 1,379.3  | 1,283.6  | 1,444.8  | 1,594.4  |
| lfugao               |         |          |         |         |         |          |          |          |          |          |          |
| Kalinga              |         |          |         |         |         |          |          |          |          |          |          |
| Mountain<br>Province |         | ***      |         |         |         |          |          | •••      |          |          | •••      |
| Rubber (cuplu        | mp)     |          |         |         |         |          |          |          |          |          |          |
| CAR                  |         | •••      | •••     |         |         |          | •••      |          |          |          | •••      |
| Abra                 |         |          |         |         |         |          |          |          |          |          |          |
| Apayao               |         |          |         |         |         |          |          |          |          |          |          |
| Benguet              |         |          |         |         |         |          |          |          |          |          |          |
| lfugao               | •••     | •••      |         |         |         |          |          |          | •••      |          | •••      |
| Kalinga              |         |          |         |         |         |          |          |          |          |          |          |
| Mountain<br>Province |         |          |         |         |         |          |          |          |          |          |          |
| Sugarcane            |         |          |         |         |         |          |          |          |          |          |          |
| CAR                  | 9,842.4 | 10,215.1 | 6,992.4 | 7,977.0 | 7,567.6 | 12,895.2 | 49,709.2 | 51,787.0 | 41,816.1 | 24,870.4 | 28,977.9 |
| Abra                 |         | 176.3    | 178.1   | 178.9   | 180.9   | 184.2    | 187.2    | 153.2    | 173.2    | 178.0    | 174.6    |
| Apayao               |         | •••      |         |         |         |          |          |          |          |          | •••      |
| Benguet              |         |          |         |         |         |          | 10.0     | 9.7      | 10.5     | 14.1     | 13.1     |
| lfugao               |         |          |         |         |         | 103.3    | 190.0    | 114.0    | 93.8     | 49.6     | 12.1     |
| Kalinga              | 9,045.0 | 9,236.0  | 6,000.0 | 6,960.0 | 6,530.0 | 11,750.0 | 48,461.0 | 50,640.8 | 40,736.5 | 23,816.0 | 28,107.0 |
| Mountain<br>Province | 797.4   | 802.8    | 814.3   | 838.1   | 856.7   | 857.7    | 861.1    | 869.4    | 802.1    | 812.7    | 671.1    |
| Tobacco              |         |          |         |         |         |          |          |          |          |          |          |
| CAR                  | 912.1   | 929.3    | 940.8   | 925.8   | 948.7   | 963.5    | 1,256.7  | 1,484.1  | 1,804.7  | 1,777.4  | 1,618.8  |
| Abra                 | 902.8   | 922.2    | 934.7   | 919.8   | 942.6   | 957.2    | 1,250.2  | 1,477.6  | 1,696.3  | 1,757.2  | 1,613.4  |
| Apayao               | 0.8     | 0.7      | 0.2     | 0.2     | 0.3     | 0.4      | 0.4      | 0.4      | 0.4      | 0.5      | 0.4      |
| Benguet              | 2.4     |          |         |         |         |          |          |          |          |          |          |
| lfugao               | 1.2     | 1.6      | 1.2     | 1.3     | 1.3     | 1.4      | 1.9      | 1.8      | 1.6      | 1.8      | 1.0      |
| Kalinga              | 4.9     | 4.8      | 4.8     | 4.5     | 4.6     | 4.6      | 4.2      | 4.3      | 106.4    | 17.9     | 4.0      |
| Mountain<br>Province |         |          |         |         |         |          |          |          |          |          |          |
| Tobacco Nativo       | e       |          |         |         |         |          |          |          |          |          |          |
| CAR                  | 5.7     | 5.5      | 5.0     | 4.7     | 17.4    | 10.1     | 14.0     | 14.8     | 14.8     | 13.5     | 14.2     |
| Abra                 |         |          |         |         | 12.6    | 5.1      | 9.4      | 10.1     | 10.0     | 10.1     | 9.8      |
| Apayao               | 0.8     | 0.7      | 0.2     | 0.2     | 0.3     | 0.4      | 0.4      | 0.4      | 0.4      | 0.5      | 0.4      |
| Benguet              |         |          |         |         |         |          |          |          |          |          |          |
| lfugao               |         |          |         |         |         |          |          |          |          |          | •••      |
| Kalinga              | 4.9     | 4.8      | 4.8     | 4.5     | 4.6     | 4.6      | 4.2      | 4.3      | 4.4      | 2.9      | 4.0      |
| Mountain<br>Province |         |          |         |         |         |          |          |          |          |          |          |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     |
|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Tabassa Vissi        |          | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2010     | 2017     | 2010     |
| Tobacco Virgin       |          | 022.2    | 0247     | 010.0    | 030.0    | 0443     | 1 226 0  | 1 452 1  | 1 (71 1  | 1 721 2  | 1.500.6  |
| CAR                  | 905.2    | 922.2    | 934.7    | 919.8    | 930.0    | 944.3    | 1,226.0  | 1,452.1  | 1,671.1  | 1,731.3  | 1,588.6  |
| Abra                 | 902.8    | 922.2    | 934.7    | 919.8    | 930.0    | 944.3    | 1,226.0  | 1,452.1  | 1,671.1  | 1,731.3  | 1,588.6  |
| Apayao               |          | •••      |          | •••      | •••      |          | •••      | •••      | •••      |          |          |
| Benguet              | 2.4      | •••      |          |          |          |          | •••      |          |          |          |          |
| Ifugao               |          | •••      |          | •••      | •••      |          | •••      | •••      | •••      |          |          |
| Kalinga              |          | •••      |          | •••      | •••      |          | •••      | •••      | •••      |          |          |
| Mountain<br>Province |          |          |          | •••      |          | •••      |          | •••      |          | •••      |          |
| Banana               |          |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 26,699.7 | 26,981.1 | 25,668.9 | 25,082.5 | 25,100.1 | 27,194.6 | 26,254.0 | 26,576.4 | 25,584.5 | 21,104.5 | 20,866.5 |
| Abra                 | 7,711.2  | 7,730.6  | 7,782.1  | 7,617.4  | 7,685.0  | 7,615.6  | 7,054.1  | 7,408.6  | 6,539.1  | 6,519.6  | 6,148.4  |
| Apayao               | 7,197.0  | 7,577.6  | 6,442.6  | 6,404.8  | 6,405.5  | 9,440.0  | 8,916.4  | 8,838.0  | 9,072.4  | 5,443.4  | 5,216.8  |
| Benguet              | 2,267.6  | 2,270.8  | 2,193.5  | 2,094.4  | 2,011.5  | 2,039.7  | 2,065.2  | 1,973.0  | 1,853.8  | 1,711.7  | 1,548.7  |
| Ifugao               | 6,688.6  | 6,758.0  | 6,699.6  | 6,553.8  | 6,510.3  | 5,424.1  | 5,445.1  | 5,502.2  | 5,486.1  | 5,493.2  | 5,077.7  |
| Kalinga              | 1,195.0  | 1,210.4  | 1,175.2  | 1,193.4  | 1,200.9  | 1,287.5  | 1,245.9  | 1,270.4  | 1,117.8  | 616.3    | 1,412.4  |
| Mountain<br>Province | 1,640.4  | 1,433.7  | 1,375.9  | 1,218.8  | 1,287.0  | 1,387.7  | 1,527.4  | 1,584.3  | 1,515.4  | 1,320.3  | 1,462.5  |
| Banana Caver         | ndish    |          |          |          |          |          |          |          |          |          |          |
| CAR                  |          |          |          |          |          |          |          |          |          |          |          |
| Abra                 |          | •••      |          |          |          |          |          |          |          |          |          |
| Apayao               |          | •••      |          |          |          |          |          |          |          |          |          |
| Benguet              |          |          |          |          |          |          |          |          |          |          |          |
| Ifugao               |          | •••      |          |          |          |          |          |          |          |          |          |
| Kalinga              |          |          |          |          |          |          |          |          |          |          |          |
| Mountain<br>Province |          |          |          |          |          |          |          |          |          |          |          |
| Banana Lakat         | an       |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 4,804.3  | 4,929.7  | 4,318.0  | 4,231.3  | 4,146.0  | 4,829.3  | 4,603.6  | 4,457.6  | 4,276.2  | 2,962.3  | 2,736.5  |
| Abra                 | 260.9    | 254.4    | 256.0    | 254.9    | 257.3    | 269.0    | 271.4    | 282.1    | 240.2    | 255.5    | 231.0    |
| Apayao               | 2,611.0  | 2,780.0  | 2,233.0  | 2,191.0  | 2,216.0  | 3,174.0  | 2,968.7  | 2,927.6  | 2,872.1  | 1,694.5  | 1,593.8  |
| Benguet              | 414.1    | 402.1    | 384.5    | 377.7    | 357.7    | 355.6    | 347.5    | 297.6    | 261.8    | 247.6    | 221.2    |
| Ifugao               | 1,149.0  | 1,133.3  | 1,105.6  | 1,068.6  | 1,021.5  | 759.7    | 770.8    | 730.3    | 733.2    | 722.9    | 638.6    |
| Kalinga              | 331.0    | 332.8    | 322.0    | 328.4    | 283.4    | 262.5    | 240.8    | 219.1    | 169.0    | 41.8     | 52.0     |
| Mountain<br>Province | 38.3     | 27.1     | 16.9     | 10.7     | 10.1     | 8.5      | 4.4      | 0.9      |          |          |          |
| Banana Saba          |          |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 8,989.4  | 9,090.1  | 9,020.8  | 8,768.6  | 8,909.9  | 9,552.8  | 8,913.8  | 9,214.7  | 8,844.3  | 7,558.0  | 7,570.9  |
| Abra                 | 4,742.5  | 4,786.8  | 4,835.4  | 4,694.8  | 4,744.6  | 4,615.7  | 4,031.3  | 4,313.9  | 3,850.0  | 3,787.6  | 3,607.7  |
| Apayao               | 1,723.0  | 1,765.0  | 1,583.0  | 1,590.0  | 1,596.0  | 2,356.7  | 2,193.6  | 2,132.3  | 2,308.5  | 1,388.7  | 1,295.0  |
| Benguet              | 566.7    | 577.9    | 565.7    | 549.5    | 529.1    | 541.2    | 555.9    | 526.9    | 505.9    | 464.9    | 417.6    |
| Ifugao               | 1,004.5  | 1,025.3  | 1,032.8  | 1,011.6  | 1,022.3  | 857.1    | 861.1    | 882.0    | 880.4    | 892.5    | 850.4    |
| Kalinga              | 220.3    | 221.2    | 210.5    | 215.9    | 250.0    | 310.0    | 275.4    | 297.5    | 262.0    | 165.9    | 401.2    |
| Mountain<br>Province | 732.5    | 714.1    | 793.4    | 706.7    | 767.9    | 872.2    | 996.5    | 1,062.2  | 1,037.6  | 858.4    | 999.1    |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Calamansi            | 2006    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2010    | 2017    | 2010    |
| CAR                  | 438.2   | 426.4   | 420.8   | 418.7   | 420.2   | 417.8   | 444.6   | 445.4   | 435.5   | 440.7   | 437.5   |
| Abra                 | 85.4    | 86.9    | 86.8    | 85.8    | 87.0    | 87.6    | 105.8   | 112.0   | 116.8   | 120.7   | 116.7   |
|                      | 62.5    | 57.0    | 56.0    | 55.5    | 56.4    | 52.9    | 55.8    | 60.1    | 57.1    | 51.1    | 52.7    |
| Apayao<br>Benguet    | 218.6   | 210.6   | 206.3   | 205.2   | 202.6   | 204.9   | 210.4   | 199.7   | 192.1   | 194.5   | 191.3   |
| Ifugao               | 44.8    | 47.9    | 45.2    | 44.5    | 45.4    | 45.0    | 44.7    | 45.3    | 45.7    | 46.6    | 43.8    |
| Kalinga              | 8.4     | 8.9     | 8.8     | 9.2     | 10.1    | 11.5    | 14.5    | 15.4    | 14.5    | 12.1    | 16.3    |
| Mountain             | 18.6    | 15.1    | 17.8    | 18.6    | 18.8    | 15.9    | 13.3    | 12.8    | 9.3     | 15.7    | 16.7    |
| Province             | 10.0    | 15.1    | 17.0    | 10.0    | 10.0    | 15.9    | 13.3    | 12.0    | 9.3     | 15.7    | 10.7    |
| Durian               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  |         |         |         | •••     |         |         | •••     |         |         |         |         |
| Abra                 |         |         |         | •••     |         |         |         |         |         |         |         |
| Apayao               |         |         |         | •••     |         |         |         |         |         |         |         |
| Benguet              |         |         |         |         |         |         |         |         |         |         |         |
| lfugao               |         | •••     |         | •••     |         |         | •••     | •••     |         |         |         |
| Kalinga              |         |         |         |         |         |         |         |         |         |         |         |
| Mountain<br>Province |         |         |         |         |         |         |         |         |         |         |         |
| Lanzones             |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 17.4    | 15.4    | 16.6    | 12.1    | 15.6    | 38.5    | 46.2    | 50.3    | 43.0    | 35.5    | 30.2    |
| Abra                 |         |         |         |         | •••     |         |         |         |         |         |         |
| Apayao               | 16.7    | 14.7    | 15.6    | 11.0    | 14.0    | 34.8    | 41.2    | 41.4    | 33.6    | 27.7    | 21.5    |
| Benguet              |         |         |         |         |         |         |         | 5.0     | 5.1     | 5.6     | 5.1     |
| Ifugao               |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga              | 0.7     | 0.8     | 1.0     | 1.1     | 1.6     | 3.8     | 5.0     | 3.9     | 4.3     | 2.3     | 3.6     |
| Mountain<br>Province |         |         |         |         |         |         |         |         |         |         |         |
| Mandarin             |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 884.9   | 878.0   | 796.3   | 796.9   | 807.8   | 845.5   | 890.0   | 872.2   | 711.2   | 653.9   | 564.3   |
| Abra                 |         |         |         |         | •••     |         |         |         |         |         |         |
| Apayao               | 28.3    | 32.7    | 37.3    | 33.0    | 41.0    | 71.5    | 100.7   | 107.7   | 83.5    | 86.3    | 72.3    |
| Benguet              | 717.1   | 710.0   | 630.8   | 616.5   | 611.9   | 619.0   | 629.4   | 576.5   | 458.5   | 418.0   | 345.0   |
| Ifugao               | 30.8    | 33.5    | 30.3    | 30.9    | 28.8    | 28.4    | 28.9    | 27.0    | 27.5    | 29.5    | 19.9    |
| Kalinga              | 12.7    | 13.0    | 12.2    | 12.9    | 15.8    | 14.0    | 13.0    | 11.3    | 3.8     | 6.5     | 2.7     |
| Mountain<br>Province | 96.0    | 88.9    | 85.7    | 103.6   | 110.3   | 112.7   | 117.9   | 149.7   | 138.0   | 113.6   | 124.4   |
| Mango                |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 3,704.8 | 3,737.7 | 3,721.2 | 3,709.1 | 3,317.6 | 3,421.8 | 3,609.8 | 3,332.4 | 3,101.6 | 2,878.0 | 2,718.4 |
| Abra                 | 415.9   | 420.9   | 428.5   | 422.6   | 427.2   | 435.8   | 673.5   | 723.8   | 790.5   | 1,096.8 | 1,090.0 |
| Apayao               | 18.3    | 15.3    | 20.6    | 19.5    | 18.8    | 16.3    | 23.3    | 25.0    | 25.9    | 8.9     | 9.4     |
| Benguet              | 2,401.0 | 2,415.1 | 2,382.1 | 2,377.0 | 1,985.9 | 2,012.0 | 1,911.4 | 1,591.6 | 1,276.3 | 1,251.5 | 983.7   |
| Ifugao               | 644.3   | 640.1   | 643.4   | 637.6   | 643.8   | 648.8   | 660.8   | 645.5   | 653.1   | 364.7   | 396.6   |
| Kalinga              | 96.7    | 92.6    | 88.4    | 86.3    | 79.7    | 148.8   | 183.7   | 204.0   | 205.6   | 15.0    | 95.0    |
| Mountain<br>Province | 128.6   | 153.7   | 158.2   | 166.2   | 162.3   | 160.2   | 157.2   | 142.6   | 150.2   | 141.1   | 143.8   |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Mango Caraba         |         | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2013    | 2010    | 2017    | 2010    |
| CAR                  | 3,605.0 | 3,635.0 | 3,615.6 | 3,595.0 | 3,204.4 | 3,283.3 | 3,465.4 | 3,204.0 | 2,970.9 | 2,792.7 | 2,613.1 |
| Abra                 | 415.9   | 420.9   | 428.5   | 422.6   | 427.2   | 435.8   | 673.5   | 723.8   | 790.5   | 1,096.8 | 1,090.0 |
| Apayao               | 10.9    | 8.5     | 13.0    | 12.0    | 11.5    | 10.0    | 16.8    | 18.3    | 18.9    | 4.3     | 3.6     |
| Benguet              | 2,401.0 | 2,415.1 | 2,382.1 | 2,377.0 | 1,985.9 | 2,012.0 | 1,911.4 | 1,591.6 | 1,276.3 | 1,251.5 | 983.7   |
| Ifugao               | 625.2   | 622.0   | 624.3   | 620.3   | 625.4   | 630.2   | 638.3   | 623.6   | 630.5   | 349.3   | 378.2   |
| Kalinga              | 63.0    | 60.0    | 57.0    | 56.0    | 52.0    | 98.0    | 130.0   | 160.0   | 165.0   | 8.0     | 75.0    |
| Mountain<br>Province | 89.0    | 108.5   | 110.8   | 107.1   | 102.4   | 97.3    | 95.5    | 86.8    | 89.8    | 82.8    | 82.7    |
| Mangosteen           |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | •••     | •••     |         |         |         |         |         |         |         |         |         |
| Abra                 |         | •••     |         |         |         |         | •••     |         |         |         |         |
| Apayao               |         | •••     |         |         |         |         | •••     |         |         |         |         |
| Benguet              |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao               |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga              |         |         |         |         |         |         |         |         |         |         |         |
| Mountain<br>Province |         |         |         |         |         |         |         |         |         |         |         |
| Orange               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 1,012.8 | 990.5   | 933.2   | 892.9   | 861.8   | 842.3   | 838.6   | 781.7   | 675.0   | 612.6   | 546.5   |
| Abra                 |         | •••     |         |         |         |         | •••     |         |         |         |         |
| Apayao               | 3.1     | 3.3     | 3.5     | 2.9     | 3.2     | 3.8     | 4.4     | 4.6     | 3.8     | 3.6     | 2.8     |
| Benguet              | 810.1   | 796.7   | 757.9   | 741.0   | 734.0   | 738.1   | 747.2   | 705.0   | 616.5   | 556.2   | 497.3   |
| Ifugao               | 18.2    | 20.4    | 17.3    | 17.7    | 16.8    | 16.4    | 16.7    | 16.7    | 17.0    | 15.8    | 8.7     |
| Kalinga              | 23.8    | 24.4    | 23.3    | 24.2    | 17.7    | 11.0    | 10.3    | 8.6     | 2.1     | 4.1     | 0.8     |
| Mountain<br>Province | 157.7   | 145.7   | 131.2   | 107.1   | 90.1    | 73.1    | 60.1    | 46.9    | 35.7    | 32.9    | 37.0    |
| Papaya               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 1,666.9 | 1,674.8 | 1,643.9 | 1,586.9 | 1,590.1 | 1,627.4 | 1,730.1 | 1,764.9 | 1,688.4 | 1,635.3 | 1,522.7 |
| Abra                 | 703.8   | 712.9   | 711.0   | 694.0   | 703.3   | 731.2   | 828.1   | 888.3   | 873.8   | 877.7   | 856.9   |
| Apayao               | 27.1    | 24.7    | 21.3    | 20.3    | 20.8    | 27.5    | 25.3    | 25.1    | 23.5    | 20.3    | 20.2    |
| Benguet              | 312.0   | 312.7   | 305.0   | 290.0   | 272.3   | 275.7   | 281.9   | 268.3   | 257.4   | 252.0   | 246.0   |
| Ifugao               | 406.5   | 401.3   | 383.7   | 349.1   | 346.2   | 326.3   | 331.3   | 319.9   | 310.3   | 301.3   | 222.3   |
| Kalinga              | 78.7    | 80.8    | 78.6    | 79.5    | 83.6    | 86.9    | 81.0    | 75.5    | 55.9    | 25.2    | 20.0    |
| Mountain<br>Province | 138.9   | 142.5   | 144.2   | 154.0   | 164.0   | 179.8   | 182.6   | 187.8   | 167.6   | 158.9   | 157.3   |
| Pineapple            |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 711.2   | 715.7   | 682.6   | 687.2   | 711.5   | 770.6   | 804.7   | 813.9   | 831.1   | 750.3   | 749.3   |
| Abra                 | 50.3    | 51.3    | 52.4    | 51.2    | 51.8    | 52.8    | 68.0    | 72.0    | 70.0    | 71.3    | 70.2    |
| Apayao               | 282.0   | 298.0   | 273.0   | 284.0   | 320.0   | 385.0   | 406.0   | 425.0   | 463.4   | 383.8   | 383.8   |
| Benguet              | 215.3   | 213.1   | 209.7   | 208.7   | 195.8   | 198.0   | 202.0   | 198.6   | 184.5   | 189.7   | 191.3   |
| Ifugao               | 55.2    | 57.3    | 55.0    | 56.5    | 58.8    | 54.8    | 57.7    | 59.5    | 58.9    | 66.1    | 66.8    |
| Kalinga              | 38.0    | 35.8    | 34.0    | 35.6    | 38.8    | 34.5    | 30.5    | 29.3    | 22.8    | 8.7     | 7.5     |
| Mountain<br>Province | 70.5    | 60.1    | 58.4    | 51.3    | 46.4    | 45.5    | 40.5    | 29.5    | 31.5    | 30.8    | 29.8    |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Rambutan             | 2000  | 2003  | 2010  | 2011  | 2012  | 2013  | 2014  | 2013  | 2010  | 2017  | 2010  |
| CAR                  | 39.9  | 40.7  | 43.3  | 31.4  | 46.3  | 46.5  | 63.6  | 79.5  | 87.1  | 74.9  | 69.8  |
| Abra                 |       |       |       |       |       |       |       |       |       |       |       |
| Apayao               | 38.8  | 39.5  | 42.0  | 30.0  | 43.0  | 43.0  | 56.5  | 59.5  | 66.0  | 55.4  | 45.4  |
| Benguet              |       |       |       |       |       |       |       | 14.0  | 14.1  | 14.6  | 13.1  |
| Ifugao               |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga              | 1.1   | 1.2   | 1.3   | 1.4   | 3.3   | 3.5   | 7.1   | 6.0   | 7.0   | 4.9   | 11.4  |
| Mountain<br>Province |       |       |       |       |       |       |       |       |       |       |       |
| Tamarind             |       |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 12.7  | 12.9  | 13.2  | 13.5  | 13.6  | 13.9  | 8.0   | 8.5   | 8.9   | 10.0  | 10.3  |
| Abra                 | 12.7  | 12.9  | 13.2  | 13.5  | 13.6  | 13.9  | 8.0   | 8.5   | 8.9   | 10.0  | 10.1  |
| Apayao               | •••   | •••   |       |       |       |       |       |       |       |       |       |
| Benguet              |       |       |       |       |       |       |       |       |       |       |       |
| Ifugao               |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga              |       |       |       |       |       |       |       |       |       |       | 0.2   |
| Mountain<br>Province |       |       |       |       |       |       |       |       |       |       |       |
| Watermelon           |       |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 372.8 | 376.8 | 377.7 | 376.4 | 375.0 | 372.0 | 117.6 | 141.0 | 140.2 | 141.8 | 142.0 |
| Abra                 | 372.8 | 376.8 | 377.7 | 376.4 | 375.0 | 372.0 | 117.6 | 141.0 | 140.2 | 141.8 | 140.5 |
| Apayao               | •••   | •••   |       |       |       |       |       |       |       |       | 1.5   |
| Benguet              | •••   | •••   |       |       | •••   |       |       |       |       |       |       |
| Ifugao               |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga              |       |       |       |       |       |       |       |       |       |       |       |
| Mountain<br>Province |       |       |       |       |       |       |       |       |       |       |       |
| Asparagus            |       |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 0.9   | •••   |       |       |       |       |       |       |       |       |       |
| Abra                 |       |       |       |       |       |       |       |       |       |       |       |
| Apayao               |       |       |       |       |       |       |       |       |       |       |       |
| Benguet              | 0.9   | •••   | •••   |       |       |       |       |       |       |       |       |
| Ifugao               | •••   | •••   |       |       |       |       |       |       |       |       |       |
| Kalinga              |       |       |       |       |       |       |       |       |       |       |       |
| Mountain<br>Province |       |       |       |       |       |       |       |       |       |       |       |
| Ampalaya Fru         |       |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 447.3 | 454.0 | 453.8 | 455.1 | 472.3 | 490.7 | 471.3 | 475.0 | 442.3 | 453.8 | 419.9 |
| Abra                 | 316.1 | 322.5 | 328.4 | 328.3 | 331.8 | 326.5 | 301.7 | 308.0 | 302.2 | 311.0 | 296.6 |
| Apayao               | 8.6   | 8.1   | 7.8   | 7.9   | 14.9  | 24.0  | 30.2  | 34.8  | 27.4  | 32.1  | 29.8  |
| Benguet              | •••   | •••   |       | •••   | •••   |       |       | •••   |       |       |       |
| Ifugao               | 65.5  | 64.5  | 55.7  | 56.0  | 55.6  | 55.7  | 56.8  | 58.9  | 57.4  | 58.7  | 49.9  |
| Kalinga              | 53.4  | 55.2  | 58.2  | 59.2  | 66.3  | 81.0  | 79.0  | 73.4  | 55.3  | 52.0  | 43.6  |
| Mountain<br>Province | 3.7   | 3.7   | 3.7   | 3.7   | 3.7   | 3.6   | 3.7   |       |       |       |       |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons) (continued)

| (continued)          | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Danish orton         | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  |
| Rambutan             | 20.0  | 40.7  | 42.2  | 24.4  | 46.0  | 46.5  |       | 70.5  | 07.4  | 740   | 60.0  |
| CAR                  | 39.9  | 40.7  | 43.3  | 31.4  | 46.3  | 46.5  | 63.6  | 79.5  | 87.1  | 74.9  | 69.8  |
| Abra                 |       |       |       |       |       |       |       |       |       |       |       |
| Apayao               | 38.8  | 39.5  | 42.0  | 30.0  | 43.0  | 43.0  | 56.5  | 59.5  | 66.0  | 55.4  | 45.4  |
| Benguet              | •••   | •••   | •••   | •••   | •••   | •••   | •••   | 14.0  | 14.1  | 14.6  | 13.1  |
| Ifugao               |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga              | 1.1   | 1.2   | 1.3   | 1.4   | 3.3   | 3.5   | 7.1   | 6.0   | 7.0   | 4.9   | 11.4  |
| Mountain<br>Province |       | •••   |       | •••   |       |       | •••   | •••   | •••   | •••   |       |
| Tamarind             |       |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 12.7  | 12.9  | 13.2  | 13.5  | 13.6  | 13.9  | 8.0   | 8.5   | 8.9   | 10.0  | 10.3  |
| Abra                 | 12.7  | 12.9  | 13.2  | 13.5  | 13.6  | 13.9  | 8.0   | 8.5   | 8.9   | 10.0  | 10.1  |
| Apayao               | •••   |       |       |       |       |       |       |       |       |       |       |
| Benguet              |       |       |       |       |       |       |       |       |       |       |       |
| Ifugao               | •••   |       |       |       |       |       |       |       |       |       |       |
| Kalinga              |       |       |       |       |       |       |       |       |       |       | 0.2   |
| Mountain<br>Province |       |       |       |       |       |       |       |       |       |       |       |
| Watermelon           |       |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 372.8 | 376.8 | 377.7 | 376.4 | 375.0 | 372.0 | 117.6 | 141.0 | 140.2 | 141.8 | 142.0 |
| Abra                 | 372.8 | 376.8 | 377.7 | 376.4 | 375.0 | 372.0 | 117.6 | 141.0 | 140.2 | 141.8 | 140.5 |
| Apayao               |       |       |       |       |       |       |       |       |       |       | 1.5   |
| Benguet              |       | •••   |       |       |       |       |       |       |       |       |       |
| Ifugao               | •••   | •••   |       |       |       | •••   | •••   |       |       |       |       |
| Kalinga              | •••   | •••   |       |       | •••   |       |       | •••   |       |       | •••   |
| Mountain<br>Province |       |       |       |       |       |       |       |       |       |       |       |
| Asparagus            |       |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 0.9   |       |       |       |       |       |       |       |       |       |       |
| Abra                 | •••   |       |       |       |       |       |       |       |       |       |       |
| Apayao               |       |       |       |       |       |       |       |       |       |       |       |
| Benguet              | 0.9   |       |       |       |       |       |       |       |       |       |       |
| Ifugao               |       |       |       |       |       |       |       |       |       |       |       |
| Kalinga              |       |       |       |       |       |       |       |       |       |       |       |
| Mountain<br>Province |       |       |       |       |       |       |       |       |       |       |       |
| Ampalaya Frui        | t     |       |       |       |       |       |       |       |       |       |       |
| CAR                  | 447.3 | 454.0 | 453.8 | 455.1 | 472.3 | 490.7 | 471.3 | 475.0 | 442.3 | 453.8 | 419.9 |
| Abra                 | 316.1 | 322.5 | 328.4 | 328.3 | 331.8 | 326.5 | 301.7 | 308.0 | 302.2 | 311.0 | 296.6 |
| Apayao               | 8.6   | 8.1   | 7.8   | 7.9   | 14.9  | 24.0  | 30.2  | 34.8  | 27.4  | 32.1  | 29.8  |
| Benguet              |       |       |       |       |       |       |       |       |       |       |       |
| Ifugao               | 65.5  | 64.5  | 55.7  | 56.0  | 55.6  | 55.7  | 56.8  | 58.9  | 57.4  | 58.7  | 49.9  |
| Kalinga              | 53.4  | 55.2  | 58.2  | 59.2  | 66.3  | 81.0  | 79.0  | 73.4  | 55.3  | 52.0  | 43.6  |
| Mountain<br>Province | 3.7   | 3.7   | 3.7   | 3.7   | 3.7   | 3.6   | 3.7   |       |       |       |       |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons) (continued)

| (continued)          |           |          |              |              |              |          |               |          |          |              |               |
|----------------------|-----------|----------|--------------|--------------|--------------|----------|---------------|----------|----------|--------------|---------------|
|                      | 2008      | 2009     | 2010         | 2011         | 2012         | 2013     | 2014          | 2015     | 2016     | 2017         | 2018          |
| Bottle gourd         | •         |          |              |              |              |          |               |          |          |              |               |
| CAR                  | 1,287.8   | 1,289.5  | 1,307.1      | 1,308.3      | 1,315.6      | 1,292.8  | 1,323.8       | 1,200.3  | 1,176.8  | 1,211.1      | 1,165.1       |
| Abra                 | 1,082.2   | 1,094.3  | 1,115.0      | 1,114.0      | 1,114.4      | 1,084.7  | 1,111.0       | 979.8    | 961.2    | 998.2        | 953.3         |
| Apayao               | 3.2       | 2.6      | 2.3          | 2.4          | 8.6          | 11.6     | 15.2          | 16.8     | 15.3     | 20.3         | 18.7          |
| Benguet              | 202.4     |          | 101.0        | 102.7        | 102.0        | 106.5    | 107.0         | 102.5    | 100.5    | 102.7        |               |
| Ifugao               | 202.4     | 192.6    | 181.8<br>8.0 | 183.7<br>8.2 | 183.9<br>8.8 | 186.5    | 187.0<br>10.7 | 192.5    | 188.5    | 183.7<br>8.9 | 182.7<br>10.4 |
| Kalinga<br>Mountain  | •••       | •••      |              |              |              | 10.0     |               | 11.2     | 11.8     |              |               |
| Province             | •••       | •••      | •••          | •••          | •••          | •••      | •••           | •••      | •••      | •••          | •••           |
| Broccoli             |           |          |              |              |              |          |               |          |          |              |               |
| CAR                  | 1,851.8   | 1,858.0  | 1,846.9      | 1,864.0      | 1,919.3      | 1,948.4  | 1,984.1       | 1,890.1  | 1,820.6  | 2,077.0      | 1,790.6       |
| Abra                 |           |          |              |              |              |          |               |          |          |              |               |
| Apayao               |           |          |              |              |              |          |               |          |          |              |               |
| Benguet              | 1,839.9   | 1,846.0  | 1,846.9      | 1,830.8      | 1,859.3      | 1,886.8  | 1,921.8       | 1,851.6  | 1,777.5  | 2,026.0      | 1,741.8       |
| Ifugao               | •••       |          | •••          | •••          |              | •••      | •••           | •••      | •••      | •••          | •••           |
| Kalinga              | •••       |          | •••          | •••          | •••          | •••      | •••           | •••      | •••      | •••          |               |
| Mountain<br>Province | 11.9      | 12.0     |              | 33.2         | 60.0         | 61.6     | 62.4          | 38.5     | 43.1     | 51.0         | 48.8          |
| Cabbage              |           |          |              |              |              |          |               |          |          |              |               |
| CAR                  | 102,894.4 | 99,155.2 | 102,343.6    | 98,942.8     | 99,361.7     | 99,957.6 | 99,520.1      | 97,306.8 | 94,727.8 | 94,233.0     | 93,032.5      |
| Abra                 |           |          |              |              |              |          |               |          |          |              |               |
| Apayao               |           |          |              |              |              |          |               |          |          |              |               |
| Benguet              | 84,547.2  | 84,246.3 | 88,796.9     | 85,206.6     | 85,480.9     | 85,874.2 | 85,139.3      | 84,472.4 | 81,778.0 | 80,634.0     | 79,010.0      |
| lfugao               | 560.2     | 537.9    | 497.1        | 490.3        | 500.7        | 504.1    | 510.4         | 504.9    | 475.9    | 495.0        | 478.3         |
| Kalinga              | 15.3      | 14.7     | 16.9         | 19.1         | 20.8         | 27.7     | 26.3          | 29.7     | 24.3     | 23.9         | 19.8          |
| Mountain<br>Province | 17,771.7  | 14,356.4 | 13,032.7     | 13,226.9     | 13,359.4     | 13,551.6 | 13,844.1      | 12,299.7 | 12,449.7 | 13,080.1     | 13,524.4      |
| Carrots              |           |          |              |              |              |          |               |          |          |              |               |
| CAR                  | 60,302.8  | 59,023.8 | 63,352.5     | 58,766.1     | 60,126.1     | 60,038.4 | 60,507.3      | 59,526.8 | 58,695.0 | 58,319.4     | 57,779.4      |
| Abra                 |           |          |              |              |              |          |               |          |          |              |               |
| Apayao               | •••       |          |              | •••          |              |          |               |          |          |              | •••           |
| Benguet              | 52,918.8  | 52,617.5 | 57,706.0     | 53,964.6     | 55,471.0     | 55,399.5 | 55,786.5      | 55,133.6 | 54,499.9 | 54,387.1     | 54,088.8      |
| Ifugao               | 593.2     | 567.9    | 519.0        | 508.4        | 512.6        | 514.2    | 518.8         | 515.8    | 503.7    | 511.7        | 490.0         |
| Kalinga              | •••       |          |              |              |              |          |               |          |          |              |               |
| Mountain<br>Province | 6,790.8   | 5,838.4  | 5,127.5      | 4,293.1      | 4,142.6      | 4,124.7  | 4,202.1       | 3,877.3  | 3,691.3  | 3,420.7      | 3,200.6       |
| Cassava              |           |          |              |              |              |          |               |          |          |              |               |
| CAR                  | 1,864.8   | 1,839.4  | 1,812.8      | 1,670.6      | 2,194.0      | 11,621.2 | 12,196.6      | 13,377.5 | 16,833.0 | 22,287.1     | 22,606.0      |
| Abra                 | 35.1      | 36.1     | 36.3         | 35.4         | 36.3         | 39.3     | 46.6          | 48.3     | 47.2     | 48.7         | 49.2          |
| Apayao               | 320.2     | 324.0    | 304.3        | 304.5        | 1,056.6      | 10,480.5 | 10,929.0      | 12,098.0 | 11,432.0 | 11,301.7     | 11,823.9      |
| Benguet              | 1,204.7   | 1,184.7  | 1,184.3      | 1,045.6      | 816.5        | 779.1    | 787.4         | 748.2    | 1,074.9  | 1,070.1      | 1,039.4       |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons) (continued)

| continued)           |         |         |         |         |         |         |         |         |         |         |         |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                      | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
| Ifugao               | 76.5    | 78.9    | 77.1    | 70.6    | 73.6    | 77.6    | 187.3   | 140.1   | 3,881.7 | 9,507.3 | 9,441.7 |
| Kalinga              | 90.5    | 92.2    | 94.8    | 97.4    | 101.4   | 131.0   | 127.0   | 212.4   | 272.0   | 211.1   | 115.1   |
| Mountain<br>Province | 137.9   | 123.6   | 116.1   | 117.0   | 109.7   | 113.7   | 119.3   | 130.5   | 125.2   | 148.2   | 136.8   |
| Cauliflower          |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 4,971.5 | 4,957.2 | 5,209.8 | 5,290.3 | 5,302.2 | 5,206.7 | 5,144.1 | 5,178.7 | 5,045.7 | 5,432.5 | 4,866.6 |
| Abra                 |         |         |         |         |         |         |         | •••     |         |         |         |
| Apayao               |         |         |         |         |         |         |         |         |         |         |         |
| Benguet              | 4,945.7 | 4,932.2 | 5,185.8 | 5,270.1 | 5,289.6 | 5,193.7 | 5,130.8 | 5,167.1 | 5,040.6 | 5,427.0 | 4,863.3 |
| Ifugao               |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga              |         |         |         |         |         |         |         |         |         |         |         |
| Mountain<br>Province | 25.9    | 24.9    | 24.0    | 20.2    | 12.7    | 13.0    | 13.4    | 11.6    | 5.1     | 5.5     | 3.3     |
| Eggplant             |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 789.2   | 790.9   | 795.7   | 805.0   | 823.2   | 891.5   | 956.7   | 974.7   | 946.3   | 992.7   | 963.7   |
| Abra                 | 603.3   | 611.7   | 623.0   | 631.1   | 635.2   | 642.9   | 675.2   | 684.5   | 662.7   | 685.6   | 672.1   |
| Apayao               | 29.1    | 26.5    | 24.8    | 24.2    | 38.6    | 79.6    | 113.0   | 131.3   | 137.0   | 145.7   | 134.1   |
| Benguet              | 12.8    | 12.9    | 12.6    | 11.8    | 12.0    | 12.1    | 12.4    | 13.6    | 13.7    | 22.4    | 24.7    |
| Ifugao               | 23.0    | 24.6    | 22.0    | 23.3    | 23.6    | 23.5    | 23.8    | 23.6    | 28.1    | 29.4    | 29.4    |
| Kalinga              | 97.3    | 94.7    | 92.6    | 93.7    | 98.0    | 117.5   | 117.0   | 109.6   | 92.7    | 99.1    | 93.9    |
| Mountain<br>Province | 23.9    | 20.5    | 20.9    | 21.0    | 15.8    | 15.9    | 15.3    | 12.2    | 12.1    | 10.5    | 9.5     |
| Garlic (dried b      | oulb)   |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 16.9    | 15.8    | 14.4    | 13.5    | 14.5    | 12.6    | 11.2    | 12.0    | 10.4    | 1.0     | 0.8     |
| Abra                 |         |         |         |         |         |         |         |         |         |         |         |
| Apayao               |         |         |         |         |         |         |         |         |         |         |         |
| Benguet              |         |         |         |         |         |         |         |         |         |         |         |
| Ifugao               | 3.0     | 2.4     | 1.7     |         |         |         |         |         |         |         |         |
| Kalinga              | 14.0    | 13.4    | 12.7    | 13.5    | 14.5    | 12.6    | 11.2    | 12.0    | 10.4    | 1.0     | 0.8     |
| Mountain<br>Province | •••     |         | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     | •••     |
| Ginger               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 1,053.3 | 1,040.0 | 996.1   | 959.8   | 955.4   | 940.2   | 946.3   | 924.4   | 886.4   | 906.6   | 917.2   |
| Abra                 | 116.0   | 118.5   | 120.5   | 117.0   | 119.3   | 119.9   | 136.0   | 142.0   | 131.4   | 134.4   | 131.2   |
| Apayao               | 61.5    | 62.0    | 54.9    | 53.1    | 39.5    | 36.8    | 40.2    | 42.8    | 42.4    | 45.6    | 43.3    |
| Benguet              | 273.4   | 266.3   | 251.1   | 237.1   | 237.0   | 237.9   | 222.3   | 188.2   | 180.1   | 202.8   | 190.5   |
| Ifugao               | 560.2   | 549.7   | 528.3   | 514.2   | 519.8   | 505.4   | 507.8   | 504.8   | 473.4   | 451.5   | 459.9   |
| Kalinga              | 28.0    | 29.9    | 27.8    | 28.4    | 29.7    | 30.5    | 30.3    | 36.6    | 48.1    | 57.4    | 60.3    |
| Mountain<br>Province | 14.2    | 13.7    | 13.4    | 10.1    | 10.2    | 9.7     | 9.8     | 10.1    | 11.0    | 14.9    | 32.1    |
| Greater yam/l        | Jbi     |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 155.6   | 160.8   | 160.4   | 158.8   | 158.1   | 166.3   | 170.0   | 166.9   | 157.2   | 171.3   | 164.9   |
| Abra                 |         |         |         |         |         |         |         |         |         |         |         |
| Apayao               | 2.3     | 5.0     | 4.8     | 7.8     | 7.7     | 11.0    | 13.9    | 15.7    | 16.0    | 16.7    | 15.2    |
| Benguet              | 147.8   | 150.5   | 150.1   | 145.3   | 142.9   | 144.3   | 145.4   | 139.5   | 130.8   | 145.0   | 140.8   |
|                      |         |         |         |         |         |         |         |         |         |         |         |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons) (continued)

| (continued)          |         |         |         |         |         |         |         |         |         |         |         |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                      | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    |
| lfugao               |         |         |         |         |         |         |         |         |         | •••     |         |
| Kalinga              | 5.5     | 5.4     | 5.5     | 5.7     | 7.5     | 11.0    | 10.8    | 11.7    | 10.4    | 9.6     | 8.9     |
| Mountain<br>Province |         |         |         |         |         |         |         |         |         |         | •••     |
| Lady's finger/       |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 31.3    | 31.7    | 33.7    | 33.8    | 39.6    | 47.3    | 49.8    | 50.0    | 45.9    | 48.9    | 42.8    |
| Abra                 | 21.8    | 22.2    | 22.6    | 22.4    | 22.3    | 22.3    | 25.3    | 25.6    | 24.8    | 25.5    | 25.2    |
| Apayao               | 0.8     | 0.8     | 0.7     | 0.7     | 6.0     | 11.7    | 12.7    | 13.2    | 11.6    | 13.0    | 8.2     |
| Benguet              |         |         |         |         |         |         |         |         |         |         |         |
| lfugao               |         |         |         |         |         |         |         |         |         |         |         |
| Kalinga              | 8.7     | 8.7     | 10.5    | 10.7    | 11.3    | 13.4    | 11.8    | 11.2    | 9.6     | 10.3    | 9.4     |
| Mountain<br>Province |         |         |         |         | •••     |         |         | •••     |         |         |         |
| Lettuce              |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 1,404.4 | 1,394.9 | 1,486.2 | 1,233.2 | 1,269.7 | 1,283.4 | 1,290.9 | 1,203.6 | 1,188.0 | 1,209.3 | 1,098.9 |
| Abra                 | •••     | •••     |         |         |         | •••     |         |         |         |         |         |
| Apayao               |         |         |         |         |         | •••     |         |         |         |         |         |
| Benguet              | 1,278.0 | 1,268.6 | 1,371.8 | 1,128.8 | 1,157.4 | 1,161.1 | 1,155.5 | 1,082.3 | 1,049.2 | 1,082.3 | 983.0   |
| Ifugao               |         |         |         |         |         | •••     |         |         |         |         |         |
| Kalinga              |         |         |         |         |         |         |         |         |         |         |         |
| Mountain<br>Province | 126.3   | 126.3   | 114.4   | 104.3   | 112.3   | 122.3   | 135.4   | 121.3   | 138.8   | 127.0   | 115.9   |
| Mung bean/M          | longo   |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 142.2   | 139.0   | 130.9   | 140.5   | 140.8   | 134.1   | 133.0   | 128.4   | 124.2   | 111.2   | 93.3    |
| Abra                 |         |         |         | 12.0    | 12.2    | 12.4    | 13.0    | 13.2    | 13.0    | 13.2    | 12.9    |
| Apayao               | 4.9     | 4.4     | 3.4     | 3.9     | 3.9     | 4.6     | 5.4     | 5.9     | 6.3     | 6.7     | 5.3     |
| Benguet              | •••     | •••     |         |         |         |         |         |         |         |         |         |
| Ifugao               | 77.4    | 75.8    | 72.7    | 68.5    | 70.4    | 69.0    | 68.1    | 63.3    | 55.4    | 50.3    | 37.4    |
| Kalinga              | 25.7    | 24.6    | 23.6    | 24.6    | 24.7    | 25.3    | 25.9    | 28.0    | 29.7    | 20.8    | 18.3    |
| Mountain<br>Province | 34.3    | 34.2    | 31.2    | 31.5    | 29.6    | 22.8    | 20.7    | 18.0    | 19.9    | 20.2    | 19.4    |
| Onion                |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  |         |         |         |         |         |         |         |         |         |         |         |
| Abra                 | •••     | •••     |         | •••     | •••     | •••     |         | •••     | •••     |         |         |
| Apayao               | •••     | •••     |         |         |         |         |         |         |         |         |         |
| Benguet              |         |         |         | •••     | •••     | •••     |         | •••     |         |         |         |
| Ifugao               | •••     | •••     |         |         |         |         |         |         |         |         |         |
| Kalinga              | •••     | •••     |         |         |         | •••     |         |         |         |         |         |
| Mountain<br>Province |         |         |         |         |         |         |         |         |         |         |         |
| Peanut               |         |         |         |         |         |         |         |         |         |         |         |
| CAR                  | 130.6   | 124.2   | 122.2   | 121.2   | 122.7   | 125.5   | 123.8   | 110.0   | 102.6   | 96.5    | 75.0    |
| Abra                 |         |         |         |         |         |         |         |         |         |         |         |
| Apayao               | 5.4     | 4.6     | 3.4     | 3.5     | 3.5     | 4.1     | 4.2     | 4.4     | 4.1     | 4.3     | 3.6     |
| Benguet              | 10.0    | 9.9     | 10.1    | 9.6     | 9.3     | 9.2     | 8.7     | 7.5     | 8.1     | 8.4     | 6.6     |
| J                    |         |         |         |         |         |         |         |         |         |         |         |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons) (continued)

| (continued)          |             |          |          |          |          |          |          |          |          |          |          |
|----------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                      | 2008        | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     |
| lfugao               | 38.0        | 35.4     | 33.5     | 34.5     | 34.6     | 34.6     | 34.8     | 35.8     | 36.0     | 36.3     | 30.1     |
| Kalinga              | 10.0        | 9.8      | 9.5      | 9.7      | 10.0     | 11.1     | 10.6     | 9.9      | 9.0      | 6.7      | 7.0      |
| Mountain<br>Province | 67.2        | 64.7     | 65.7     | 63.9     | 65.3     | 66.6     | 65.5     | 52.4     | 45.4     | 40.8     | 27.7     |
| Pechay, Chine        | se          |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 44,971.0    | 43,879.1 | 46,497.3 | 44,388.6 | 45,170.0 | 45,058.4 | 45,145.3 | 44,676.8 | 43,983.9 | 43,376.0 | 42,566.0 |
| Abra                 |             | •••      |          |          |          |          |          |          |          |          |          |
| Apayao               |             | •••      |          |          | •••      | •••      | •••      | •••      |          | 0.7      | 0.7      |
| Benguet              | 40,079.4    | 39,727.3 | 43,234.5 | 41,492.2 | 42,349.0 | 42,118.8 | 42,166.5 | 41,914.5 | 41,208.9 | 40,418.5 | 39,765.0 |
| Ifugao               |             | •••      |          |          | •••      | •••      | •••      |          |          |          | •••      |
| Kalinga              | 12.8        | 12.9     | 12.2     | 12.6     | 12.8     | 5.5      |          |          |          |          |          |
| Mountain<br>Province | 4,878.8     | 4,139.0  | 3,250.6  | 2,883.7  | 2,808.2  | 2,934.1  | 2,978.8  | 2,762.3  | 2,775.0  | 2,956.8  | 2,800.3  |
| Pechay, Native       | •           |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 4,357.9     | 4,329.2  | 4,132.8  | 4,101.8  | 4,109.6  | 4,063.5  | 3,972.0  | 3,783.5  | 3,641.4  | 3,359.0  | 3,082.6  |
| Abra                 | 7.5         | 7.7      | 7.8      | 7.8      | 8.0      | 8.4      | 10.3     | 10.1     | 9.8      | 10.0     | 9.1      |
| Apayao               | 1.8         | 3.0      | 2.6      | 2.5      | 2.7      | 4.7      | 5.1      | 6.0      | 4.6      | 4.8      | 3.9      |
| Benguet              | 3,907.7     | 3,914.2  | 3,747.7  | 3,717.7  | 3,722.0  | 3,659.2  | 3,568.3  | 3,379.2  | 3,263.9  | 3,000.1  | 2,753.0  |
| lfugao               | 177.6       | 164.1    | 145.3    | 149.3    | 150.3    | 149.9    | 151.3    | 155.3    | 150.0    | 139.0    | 131.6    |
| Kalinga              | 74.2        | 73.7     | 70.4     | 72.4     | 79.5     | 99.0     | 101.3    | 100.6    | 87.4     | 83.6     | 71.9     |
| Mountain<br>Province | 189.1       | 166.5    | 159.0    | 152.2    | 147.1    | 142.3    | 135.8    | 132.4    | 125.8    | 121.6    | 113.1    |
| Radish               |             |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 1,593.2     | 1,586.3  | 1,606.9  | 1,520.9  | 1,501.6  | 1,462.5  | 1,509.9  | 1,441.4  | 1,365.4  | 1,411.2  | 1,267.0  |
| Abra                 |             |          |          |          |          |          |          |          |          |          |          |
| Apayao               |             | •••      |          |          |          |          |          |          |          |          |          |
| Benguet              | 1,411.4     | 1,420.4  | 1,440.9  | 1,362.4  | 1,343.6  | 1,303.7  | 1,361.0  | 1,311.8  | 1,258.9  | 1,285.8  | 1,149.5  |
| Ifugao               |             | •••      |          |          |          |          |          |          |          |          |          |
| Kalinga              |             |          |          |          |          |          |          |          |          |          |          |
| Mountain<br>Province | 181.8       | 165.9    | 166.0    | 158.5    | 158.1    | 158.9    | 149.0    | 129.6    | 106.5    | 125.4    | 117.5    |
| Snap beans/H         | abitchuelas |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 8,373.6     | 8,119.1  | 8,196.0  | 7,960.6  | 8,108.0  | 8,119.8  | 8,092.1  | 7,756.9  | 7,429.3  | 7,169.6  | 6,982.1  |
| Abra                 |             |          |          |          |          |          |          |          |          |          |          |
| Apayao               | 5.5         | 6.0      | 5.5      | 5.7      | 5.9      | 7.4      | 8.7      | 9.7      | 9.2      | 13.1     | 11.9     |
| Benguet              | 5,578.3     | 5,467.6  | 5,730.7  | 5,550.9  | 5,713.5  | 5,714.3  | 5,686.9  | 5,583.1  | 5,456.4  | 5,439.7  | 5,364.5  |
| Ifugao               | 1,623.1     | 1,598.3  | 1,554.3  | 1,507.5  | 1,513.0  | 1,512.4  | 1,536.1  | 1,471.5  | 1,446.9  | 1,257.7  | 1,202.5  |
| Kalinga              | 59.4        | 57.5     | 55.9     | 57.4     | 63.3     | 70.6     | 68.0     | 65.8     | 41.3     | 47.1     | 38.9     |
| Mountain<br>Province | 1,107.4     | 989.8    | 849.7    | 839.1    | 812.3    | 815.2    | 792.4    | 626.9    | 475.5    | 412.0    | 364.2    |
| Stringbeans          |             |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 493.5       | 494.2    | 470.2    | 463.6    | 483.0    | 509.9    | 535.9    | 541.7    | 531.6    | 546.2    | 470.3    |
| Abra                 | 53.5        | 55.1     | 55.6     | 54.6     | 55.3     | 56.2     | 67.0     | 72.4     | 71.6     | 73.0     | 72.4     |
| Apayao               | 21.5        | 21.8     | 20.8     | 20.1     | 28.0     | 43.4     | 61.5     | 69.3     | 72.7     | 75.7     | 72.3     |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons) (continued)

| (continued)          |           |          |          |          |          |          |          |          |          |          |          |
|----------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                      | 2008      | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     | 2015     | 2016     | 2017     | 2018     |
| Benguet              |           | •••      |          |          |          | •••      |          |          |          |          | •••      |
| Ifugao               | 270.5     | 264.0    | 247.9    | 242.4    | 244.2    | 243.8    | 241.3    | 226.5    | 216.9    | 221.4    | 164.6    |
| Kalinga              | 124.0     | 131.5    | 128.7    | 133.2    | 141.0    | 151.1    | 150.5    | 158.4    | 156.2    | 162.3    | 151.5    |
| Mountain<br>Province | 24.1      | 21.8     | 17.2     | 13.3     | 14.5     | 15.4     | 15.6     | 15.3     | 14.3     | 13.8     | 9.6      |
| Squash Fruit         |           |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 6,351.3   | 6,377.4  | 6,438.8  | 6,250.4  | 6,308.5  | 6,286.1  | 5,891.2  | 5,830.6  | 4,759.4  | 4,842.1  | 4,699.4  |
| Abra                 | 3,701.1   | 3,764.4  | 3,783.2  | 3,762.0  | 3,770.0  | 3,726.0  | 3,264.8  | 3,348.1  | 2,377.4  | 2,458.1  | 2,345.6  |
| Apayao               | 122.2     | 107.2    | 258.7    | 157.6    | 217.8    | 530.3    | 664.3    | 684.7    | 742.4    | 740.4    | 864.7    |
| Benguet              | 1,324.6   | 1,325.8  | 1,278.4  | 1,205.0  | 1,203.4  | 1,212.0  | 1,221.7  | 1,078.6  | 1,009.3  | 987.1    | 915.0    |
| Ifugao               | 202.1     | 191.9    | 165.3    | 167.1    | 170.7    | 173.4    | 178.0    | 178.1    | 175.4    | 164.7    | 174.6    |
| Kalinga              | 660.8     | 646.7    | 636.7    | 647.8    | 631.0    | 327.5    | 240.0    | 232.7    | 149.7    | 149.7    | 94.4     |
| Mountain<br>Province | 340.6     | 341.4    | 316.6    | 311.0    | 315.7    | 316.9    | 322.4    | 308.4    | 305.2    | 342.2    | 305.1    |
| Sweet Potato         |           |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 17,353.3  | 17,186.9 | 16,519.7 | 15,976.1 | 15,710.6 | 15,560.3 | 15,610.2 | 15,142.5 | 14,460.4 | 13,315.6 | 11,525.3 |
| Abra                 | 641.4     | 650.2    | 656.8    | 644.8    | 652.0    | 660.3    | 683.6    | 694.5    | 695.0    | 704.5    | 701.4    |
| Apayao               | 70.0      | 73.3     | 65.0     | 64.2     | 73.5     | 103.7    | 132.1    | 147.5    | 139.0    | 139.5    | 130.6    |
| Benguet              | 6,806.4   | 6,798.4  | 6,422.8  | 6,005.3  | 5,645.0  | 5,552.2  | 5,669.8  | 5,570.5  | 5,453.9  | 5,200.5  | 4,847.2  |
| Ifugao               | 7,418.8   | 7,377.8  | 7,327.9  | 7,323.8  | 7,341.5  | 7,181.5  | 7,251.4  | 6,989.1  | 6,842.3  | 6,167.8  | 4,995.8  |
| Kalinga              | 162.5     | 164.8    | 168.6    | 172.4    | 182.0    | 225.0    | 224.0    | 221.1    | 215.5    | 173.7    | 150.2    |
| Mountain<br>Province | 2,254.2   | 2,122.5  | 1,878.7  | 1,765.8  | 1,816.6  | 1,837.6  | 1,649.3  | 1,519.7  | 1,114.8  | 929.6    | 700.1    |
| Swamp cabba          | ge/Kangko | ng       |          |          |          |          |          |          |          |          |          |
| CAR                  | 7.1       | 7.2      | 7.1      | 7.1      | 7.6      | 8.2      | 8.7      | 8.3      | 8.6      | 8.3      | 8.3      |
| Abra                 | 6.5       | 6.7      | 6.7      | 6.7      | 6.9      | 7.0      | 7.7      | 7.4      | 7.5      | 7.4      | 7.4      |
| Apayao               |           |          |          |          |          |          |          |          |          |          |          |
| Benguet              |           |          |          | •••      |          |          |          |          |          |          |          |
| Ifugao               |           |          |          | •••      |          |          |          |          |          |          |          |
| Kalinga              | 0.5       | 0.5      | 0.5      | 0.5      | 0.7      | 1.2      | 1.0      | 0.9      | 1.2      | 0.9      | 0.9      |
| Mountain<br>Province | 0.1       |          |          |          |          |          |          |          |          |          |          |
| Taro/Gabi            |           |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 5,147.8   | 5,182.0  | 4,723.1  | 4,733.9  | 4,776.0  | 4,856.6  | 4,923.6  | 4,880.0  | 4,789.5  | 4,848.3  | 4,697.1  |
| Abra                 | 111.0     | 112.5    | 114.5    | 112.1    | 114.0    | 113.7    | 118.8    | 120.1    | 108.6    | 110.3    | 109.6    |
| Apayao               | 37.5      | 42.5     | 39.7     | 39.3     | 47.7     | 88.6     | 110.9    | 122.8    | 119.6    | 121.1    | 101.2    |
| Benguet              | 4,622.2   | 4,647.0  | 4,207.4  | 4,221.6  | 4,244.8  | 4,270.0  | 4,304.6  | 4,249.1  | 4,195.7  | 4,245.5  | 4,118.0  |
| Ifugao               | 323.3     | 328.2    | 309.0    | 310.1    | 313.8    | 317.7    | 320.1    | 321.2    | 307.7    | 313.0    | 311.4    |
| Kalinga              | 43.7      | 43.5     | 43.6     | 44.8     | 52.5     | 63.3     | 66.2     | 63.8     | 54.5     | 55.3     | 53.6     |
| Mountain<br>Province | 10.0      | 8.2      | 9.0      | 6.1      | 3.2      | 3.3      | 3.1      | 3.1      | 3.3      | 3.2      | 3.4      |
| Tomato               |           |          |          |          |          |          |          |          |          |          |          |
| CAR                  | 3,973.9   | 3,809.9  | 3,903.8  | 3,855.8  | 3,899.4  | 3,898.0  | 3,984.0  | 3,911.5  | 3,724.5  | 3,656.8  | 3,283.3  |
| Abra                 | 378.6     | 384.5    | 393.1    | 388.0    | 392.5    | 386.0    | 430.0    | 464.0    | 455.4    | 468.5    | 467.4    |
| Apayao               | 7.5       | 8.1      | 7.3      | 7.7      | 8.0      | 9.1      | 9.2      | 10.0     | 10.7     | 9.3      | 10.3     |

**Table 2.11** Other Crops: Volume of Production by Crop and Geolocation 2008 to 2018 (in metric tons)

|                      | 2008      | 2009      | 2010      | 2011      | 2012      | 2013      | 2014      | 2015      | 2016     | 2017      | 2018     |
|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|----------|
| Benguet              | 2,810.9   | 2,778.4   | 2,885.4   | 2,874.4   | 2,915.7   | 2,920.1   | 2,976.7   | 2,943.6   | 2,837.2  | 2,580.0   | 2,107.0  |
| Ifugao               | 16.6      | 16.6      | 15.1      | 15.2      | 15.6      | 15.9      | 16.7      | 26.8      | 34.9     | 56.7      | 49.2     |
| Kalinga              | 97.9      | 95.0      | 90.2      | 92.3      | 92.9      | 91.9      | 92.5      | 76.5      | 60.8     | 58.8      | 57.2     |
| Mountain<br>Province | 662.5     | 527.4     | 512.9     | 478.3     | 474.8     | 475.0     | 458.9     | 390.7     | 325.7    | 483.5     | 592.4    |
| White/Irish Po       | otato     |           |           |           |           |           |           |           |          |           |          |
| CAR                  | 103,303.1 | 101,060.7 | 107,182.0 | 103,135.4 | 102,433.7 | 100,758.1 | 102,255.2 | 101,828.5 | 99,980.9 | 100,422.7 | 99,200.8 |
| Abra                 |           |           |           | •••       |           |           |           |           |          |           |          |
| Apayao               |           | •••       |           | •••       |           |           |           |           |          |           | •••      |
| Benguet              | 87,932.0  | 87,475.7  | 95,778.6  | 90,815.6  | 90,148.0  | 88,372.8  | 89,918.4  | 90,094.6  | 88,771.1 | 89,892.5  | 89,250.0 |
| Ifugao               | 177.3     | 164.3     | 138.8     | 135.3     | 138.9     | 141.1     | 141.8     | 132.6     | 120.1    | 106.3     | 82.7     |
| Kalinga              |           |           |           |           |           |           |           |           |          |           | •••      |
| Mountain<br>Province | 15,193.9  | 13,420.7  | 11,264.6  | 12,184.5  | 12,146.8  | 12,244.2  | 12,195.0  | 11,601.4  | 11,089.7 | 10,424.0  | 9,868.1  |

**Table 2.12** Palay: Estimated Area Applied Receiving and Area Harvested Receiving Inorganic Fertilizer, CAR 2008 to 2014 (in hectares)

|                | 2008      | 2009      | 2010      | 2011      | 2012      | 2013      | 2014      |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Area Applied   | 121,561.0 | 85,245.0  | 87,071.2  | 76,220.5  | 108,711.6 | 96,310.9  | 95,614.7  |
| Area Harvested | 119,816.0 | 119,368.0 | 117,057.0 | 118,779.0 | 120,100.0 | 119,919.0 | 118,476.4 |

**Table 2.13** Corn: Estimated Area Applied Receiving and Area Harvested Receiving Inorganic Fertilizer, CAR 2008 to 2014 (in hectares)

|                | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     | 2014     |
|----------------|----------|----------|----------|----------|----------|----------|----------|
| Area Applied   | 52,963.0 | 44,201.0 | 47,846.0 | 56,051.0 | 57,294.9 | 61,639.0 | 56,118.8 |
| Area Harvested | 52,698.0 | 55,212.0 | 48,991.0 | 56,051.0 | 57,289.5 | 61,639.0 | 64,832.0 |

Source: Philippine Statistics Authority

**Table 2.14** Palay: Average Quantity Applied of Inorganic Fertilizer by Grade, CAR 2008 to 2014 (in bags of 50 kilograms)

|                          | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
|--------------------------|------|------|------|------|------|------|------|
| Average Quantity Applied | 3.7  | 4.7  | 5.2  | 5.0  | 4.9  | 5.1  | 5.8  |
| Urea                     | 2.4  | 3.1  | 3.4  | 3.2  | 2.8  | 3.0  | 3.4  |
| Ammosul                  | 0.2  | 0.1  | 0.2  | 0.1  | 0.2  | 0.2  | 0.2  |
| Ammophos                 | 0.3  | 0.2  | 0.3  | 0.4  | 0.4  | 0.4  | 0.5  |
| Complete                 | 0.8  | 1.2  | 1.3  | 1.4  | 1.5  | 1.6  | 1.7  |
| Others                   | 0.0  |      |      |      | 0.0  |      | •••  |

Source: Philippine Statistics Authority

**Table 2.15** Corn: Average Quantity Applied of Inorganic Fertilizer by Grade, CAR 2008 to 2014 (in bags of 50 kilograms)

|                                                | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
|------------------------------------------------|------|------|------|------|------|------|------|
| Average Quantity Applied                       | 4.9  | 4.5  | 4.6  | 4.4  | 5.3  | 4.8  | 6.2  |
| Urea                                           | 2.8  | 2.4  | 2.4  | 2.5  | 2.8  | 2.4  | 3.3  |
| Ammosul                                        | 0.3  | 0.1  | 0.2  | 0.0  | 0.3  | 0.2  | 0.1  |
| Ammophos                                       | 0.6  | 1.0  | 0.8  | 0.8  | 0.9  | 1.0  | 1.4  |
| Complete                                       | 1.1  | 1.0  | 1.2  | 1.1  | 1.4  | 1.2  | 1.3  |
| Others Source: Philippine Statistics Authority | 0.1  | 0.0  |      |      |      |      |      |

**Table 2.16** Livestock: Inventory by Animal Type, Farm Type, Provinces 2008 to 2018 (in heads)

|                      |          | 2008       |         |          | 2009       |         |          | 2010       |         |
|----------------------|----------|------------|---------|----------|------------|---------|----------|------------|---------|
|                      | Backyard | Commercial | Total   | Backyard | Commercial | Total   | Backyard | Commercial | Total   |
| Carabao              |          |            |         |          |            |         |          |            |         |
| CAR                  | 86,845   | 439        | 87,284  | 86,296   | 384        | 86,680  | 82,953   | 369        | 83,322  |
| Abra                 | 37,746   | 26         | 37,772  | 36,433   | 16         | 36,449  | 37,512   | 20         | 37,532  |
| Apayao               | 10,183   |            | 10,183  | 10,905   | ***        | 10,905  | 9,671    |            | 9,671   |
| Benguet              | 12,522   |            | 12,522  | 12,648   |            | 12,648  | 11,846   |            | 11,846  |
| Ifugao               | 5,736    | 353        | 6,089   | 6,180    | 347        | 6,527   | 6,328    | 349        | 6,677   |
| Kalinga              | 9,318    | 60         | 9,378   | 10,151   | 21         | 10,172  | 11,243   |            | 11,243  |
| Mountain<br>Province | 11,340   |            | 11,340  | 9,979    |            | 9,979   | 6,353    |            | 6,353   |
| Cattle               |          |            |         |          |            |         |          |            |         |
| CAR                  | 47,154   | 8,318      | 55,472  | 45,673   | 7,796      | 53,469  | 45,778   | 7,705      | 53,483  |
| Abra                 | 16,896   | 364        | 17,260  | 16,812   | 405        | 17,217  | 18,328   | 430        | 18,758  |
| Apayao               | 2,178    | 273        | 2,451   | 2,033    | 107        | 2,140   | 1,904    | 121        | 2,025   |
| Benguet              | 11,619   | 117        | 11,736  | 10,546   | 79         | 10,625  | 8,615    | 59         | 8,674   |
| Ifugao               | 5,226    | 6,169      | 11,395  | 6,067    | 5,932      | 11,999  | 6,260    | 5,688      | 11,948  |
| Kalinga              | 1,445    | 945        | 2,390   | 1,043    | 922        | 1,965   | 1,498    | 1,075      | 2,573   |
| Mountain<br>Province | 9,790    | 450        | 10,240  | 9,172    | 351        | 9,523   | 9,173    | 332        | 9,505   |
| Goat                 |          |            |         |          |            |         |          |            |         |
| CAR                  | 60,908   | 72         | 60,980  | 62,405   | 73         | 62,478  | 64,584   | 75         | 64,659  |
| Abra                 | 44,523   |            | 44,523  | 43,851   | ***        | 43,851  | 45,117   |            | 45,117  |
| Apayao               | 2,722    |            | 2,722   | 2,957    |            | 2,957   | 2,785    |            | 2,785   |
| Benguet              | 3,977    |            | 3,977   | 4,288    |            | 4,288   | 4,034    |            | 4,034   |
| Ifugao               | 5,109    | 72         | 5,181   | 6,100    | 73         | 6,173   | 6,828    | 75         | 6,903   |
| Kalinga              | 3,927    |            | 3,927   | 4,434    |            | 4,434   | 5,129    |            | 5,129   |
| Mountain<br>Province | 650      |            | 650     | 775      |            | 775     | 691      |            | 691     |
| Swine                |          |            |         |          |            |         |          |            |         |
| CAR                  | 203,650  | 2,500      | 206,150 | 207,794  | 1,931      | 209,725 | 196,383  | 2,010      | 198,393 |
| Abra                 | 50,770   | 730        | 51,500  | 50,164   | 799        | 50,963  | 58,501   | 667        | 59,168  |
| Apayao               | 25,090   | •••        | 25,090  | 29,205   |            | 29,205  | 24,325   | •••        | 24,325  |
| Benguet              | 22,150   | 850        | 23,000  | 21,870   | 264        | 22,134  | 8,615    | 144        | 8,759   |
| Ifugao               | 27,960   | 690        | 28,650  | 28,611   | 603        | 29,214  | 29,590   | 940        | 30,530  |
| Kalinga              | 38,910   | 230        | 39,140  | 43,959   | 265        | 44,224  | 41,748   | 259        | 42,007  |
| Mountain Province    | 38,770   |            | 38,770  | 33,985   |            | 33,985  | 33,604   |            | 33,604  |

|                      |          | 2011       |         |          | 2012       |         |          | 2013       |         |
|----------------------|----------|------------|---------|----------|------------|---------|----------|------------|---------|
|                      | Backyard | Commercial | Total   | Backyard | Commercial | Total   | Backyard | Commercial | Total   |
| Carabao              |          |            |         |          |            |         |          |            |         |
| CAR                  | 84,717   | 678        | 85,395  | 87,405   | 701        | 88,106  | 87,834   | 960        | 88,794  |
| Abra                 | 39,186   | 26         | 39,212  | 40,976   | 26         | 41,002  | 41,599   | 30         | 41,629  |
| Apayao               | 10,813   |            | 10,813  | 11,620   |            | 11,620  | 11,851   |            | 11,851  |
| Benguet              | 8,805    |            | 8,805   | 8,964    |            | 8,964   | 9,141    |            | 9,141   |
| Ifugao               | 7,866    | 248        | 8,114   | 7,669    | 253        | 7,922   | 7,600    | 589        | 8,189   |
| Kalinga              | 12,196   | 404        | 12,600  | 12,362   | 422        | 12,784  | 11,833   | 341        | 12,174  |
| Mountain<br>Province | 5,851    |            | 5,851   | 5,814    |            | 5,814   | 5,810    |            | 5,810   |
| Cattle               |          |            |         |          |            |         |          |            |         |
| CAR                  | 49,932   | 7,303      | 57,235  | 49,056   | 8,518      | 57,574  | 49,386   | 7,692      | 57,078  |
| Abra                 | 17,970   | 460        | 18,430  | 18,479   | 415        | 18,894  | 18,751   | 357        | 19,108  |
| Apayao               | 1,983    | 100        | 2,083   | 2,294    | 115        | 2,409   | 2,339    | 46         | 2,385   |
| Benguet              | 8,804    | 40         | 8,844   | 7,420    | 40         | 7,460   | 6,856    | 29         | 6,885   |
| lfugao               | 6,355    | 4,563      | 10,918  | 6,371    | 4,565      | 10,936  | 6,405    | 4,442      | 10,847  |
| Kalinga              | 6,411    | 1,403      | 7,814   | 6,187    | 2,590      | 8,777   | 6,767    | 2,018      | 8,785   |
| Mountain<br>Province | 8,409    | 737        | 9,146   | 8,305    | 793        | 9,098   | 8,268    | 800        | 9,068   |
| Goat                 |          |            |         |          |            |         |          |            |         |
| CAR                  | 66,946   | 62         | 67,008  | 72,595   | 101        | 72,696  | 73,406   | 140        | 73,546  |
| Abra                 | 45,506   |            | 45,506  | 47,673   |            | 47,673  | 45,512   |            | 45,512  |
| Apayao               | 3,305    |            | 3,305   | 3,976    |            | 3,976   | 4,054    |            | 4,054   |
| Benguet              | 4,840    |            | 4,840   | 7,855    |            | 7,855   | 9,141    |            | 9,141   |
| Ifugao               | 7,243    | 62         | 7,305   | 7,006    | 68         | 7,074   | 7,473    | 113        | 7,586   |
| Kalinga              | 5,199    |            | 5,199   | 5,104    | 33         | 5,137   | 6,110    | 27         | 6,137   |
| Mountain<br>Province | 853      |            | 853     | 981      |            | 981     | 1,116    |            | 1,116   |
| Swine                |          |            |         |          |            |         |          |            |         |
| CAR                  | 187,676  | 1,916      | 189,592 | 207,022  | 3,091      | 210,113 | 207,932  | 3,954      | 211,886 |
| Abra                 | 53,364   | 661        | 54,025  | 55,336   | 925        | 56,261  | 54,343   | 912        | 55,255  |
| Apayao               | 19,374   |            | 19,374  | 23,423   |            | 23,423  | 24,326   |            | 24,326  |
| Benguet              | 9,905    | 142        | 10,047  | 12,326   | 689        | 13,015  | 16,286   | 978        | 17,264  |
| Ifugao               | 30,836   | 951        | 31,787  | 34,782   | 1,183      | 35,965  | 26,467   | 1,852      | 28,319  |
| Kalinga              | 39,221   | 162        | 39,383  | 46,167   | 204        | 46,371  | 50,991   | 212        | 51,203  |
| Mountain<br>Province | 34,976   |            | 34,976  | 34,988   | 90         | 35,078  | 35,519   |            | 35,519  |

**Table 2.16** Livestock: Inventory by Animal Type, Farm Type, Provinces 2008 to 2018 (continued) (in heads)

|                                           |          | 2014       |         |          | 2015       |         |          | 2016       |         |
|-------------------------------------------|----------|------------|---------|----------|------------|---------|----------|------------|---------|
|                                           | Backyard | Commercial | Total   | Backyard | Commercial | Total   | Backyard | Commercial | Total   |
| Carabao                                   |          |            |         |          |            |         |          |            |         |
| CAR                                       | 86,403   | 870        | 87,273  | 85,094   | 929        | 86,023  | 85,338   | 927        | 86,265  |
| Abra                                      | 39,957   | 27         | 39,984  | 36,854   | 21         | 36,875  | 34,750   | 20         | 34,770  |
| Apayao                                    | 12,227   |            | 12,227  | 12,657   |            | 12,657  | 13,014   |            | 13,014  |
| Benguet                                   | 9,482    |            | 9,482   | 10,260   |            | 10,260  | 11,300   |            | 11,300  |
| Ifugao                                    | 7,166    | 556        | 7,722   | 7,020    | 628        | 7,648   | 7,038    | 605        | 7,643   |
| Kalinga                                   | 11,486   | 287        | 11,773  | 12,354   | 280        | 12,634  | 13,397   | 302        | 13,699  |
| Mountain<br>Province                      | 6,085    | ***        | 6,085   | 5,949    |            | 5,949   | 5,839    | ***        | 5,839   |
| Cattle                                    |          |            |         |          |            |         |          |            |         |
| CAR                                       | 50,365   | 7,676      | 58,041  | 52,157   | 7,699      | 59,856  | 53,150   | 7,214      | 60,364  |
| Abra                                      | 19,837   | 360        | 20,197  | 20,574   | 337        | 20,911  | 21,300   | 331        | 21,631  |
| Apayao                                    | 2,541    | 33         | 2,574   | 2,884    | 38         | 2,922   | 2,928    | 46         | 2,974   |
| Benguet                                   | 6,510    | 38         | 6,548   | 6,340    | 30         | 6,370   | 6,213    | 25         | 6,238   |
| Ifugao                                    | 6,267    | 4,582      | 10,849  | 6,850    | 4,972      | 11,822  | 6,900    | 4,770      | 11,670  |
| Kalinga                                   | 6,817    | 1,873      | 8,690   | 7,251    | 1,771      | 9,022   | 8,040    | 1,707      | 9,747   |
| Mountain<br>Province                      | 8,393    | 790        | 9,183   | 8,258    | 551        | 8,809   | 7,769    | 335        | 8,104   |
| Goat                                      |          |            |         |          |            |         |          |            |         |
| CAR                                       | 71,715   | 137        | 71,852  | 70,538   | 77         | 70,615  | 68,229   | 58         | 68,287  |
| Abra                                      | 42,456   | •••        | 42,456  | 39,376   | •••        | 39,376  | 36,855   | •••        | 36,855  |
| Apayao                                    | 4,129    |            | 4,129   | 4,166    |            | 4,166   | 3,742    |            | 3,742   |
| Benguet                                   | 10,472   |            | 10,472  | 11,150   |            | 11,150  | 11,550   |            | 11,550  |
| Ifugao                                    | 6,893    | 103        | 6,996   | 7,426    | 38         | 7,464   | 7,000    | 32         | 7,032   |
| Kalinga                                   | 6,864    | 34         | 6,898   | 7,474    | 39         | 7,513   | 8,046    | 26         | 8,072   |
| Mountain<br>Province                      | 901      |            | 901     | 946      |            | 946     | 1,036    |            | 1,036   |
| Swine                                     |          |            |         |          |            |         |          |            |         |
| CAR                                       | 205,835  | 3,788      | 209,623 | 192,731  | 3,654      | 196,385 | 192,381  | 5,994      | 198,375 |
| Abra                                      | 46,735   | 633        | 47,368  | 32,710   | 466        | 33,176  | 23,930   | 455        | 24,385  |
| Apayao                                    | 24,930   |            | 24,930  | 25,475   |            | 25,475  | 26,680   |            | 26,680  |
| Benguet                                   | 20,300   | 963        | 21,263  | 24,540   | 438        | 24,978  | 28,810   | 2,484      | 31,294  |
| Ifugao                                    | 27,260   | 1,795      | 29,055  | 23,170   | 1,935      | 25,105  | 23,780   | 2,253      | 26,033  |
| Kalinga                                   | 51,459   | 200        | 51,659  | 50,900   | 545        | 51,445  | 54,678   | 531        | 55,209  |
| Mountain<br>Province<br>Source: Philippir | 35,151   | 197        | 35,348  | 35,936   | 270        | 36,206  | 34,503   | 271        | 34,774  |

|                      |          | 2017       |         |          | 2018       |         |
|----------------------|----------|------------|---------|----------|------------|---------|
|                      | Backyard | Commercial | Total   | Backyard | Commercial | Total   |
| Carabao              |          |            |         |          |            |         |
| CAR                  | 85,562   | 947        | 86,509  | 85,904   | 904        | 86,808  |
| Abra                 | 33,300   | 20         | 33,320  | 31,973   | 16         | 31,989  |
| Apayao               | 13,216   |            | 13,216  | 13,810   |            | 13,810  |
| Benguet              | 11,806   | •••        | 11,806  | 11,655   |            | 11,655  |
| Ifugao               | 7,050    | 618        | 7,668   | 7,239    | 605        | 7,844   |
| Kalinga              | 14,570   | 309        | 14,879  | 15,920   | 283        | 16,203  |
| Mountain<br>Province | 5,620    |            | 5,620   | 5,307    |            | 5,307   |
| Cattle               |          |            |         |          |            |         |
| CAR                  | 51,717   | 7,496      | 59,213  | 50,135   | 7,661      | 57,796  |
| Abra                 | 20,715   | 239        | 20,954  | 19,758   | 112        | 19,870  |
| Apayao               | 2,936    | 78         | 3,014   | 2,993    | 50         | 3,043   |
| Benguet              | 5,976    | 18         | 5,994   | 5,797    | •••        | 5,797   |
| Ifugao               | 6,558    | 4,690      | 11,248  | 6,247    | 4,596      | 10,843  |
| Kalinga              | 8,170    | 2,066      | 10,236  | 8,270    | 2,306      | 10,576  |
| Mountain<br>Province | 7,362    | 405        | 7,767   | 7,070    | 597        | 7,667   |
| Goat                 |          |            |         |          |            |         |
| CAR                  | 62,988   | 47         | 63,035  | 60,351   | 86         | 60,437  |
| Abra                 | 32,416   |            | 32,416  | 30,364   |            | 30,364  |
| Apayao               | 3,801    |            | 3,801   | 3,768    |            | 3,768   |
| Benguet              | 10,794   |            | 10,794  | 10,675   |            | 10,675  |
| Ifugao               | 7,200    | 26         | 7,226   | 8,480    | 65         | 8,545   |
| Kalinga              | 7,755    | 21         | 7,776   | 6,164    | 21         | 6,185   |
| Mountain<br>Province | 1,022    |            | 1,022   | 900      |            | 900     |
| Swine                |          |            |         |          |            |         |
| CAR                  | 184,541  | 4,396      | 188,937 | 201,627  | 3,637      | 205,264 |
| Abra                 | 16,030   | 468        | 16,498  | 15,550   | 384        | 15,934  |
| Apayao               | 26,924   | •••        | 26,924  | 26,656   |            | 26,656  |
| Benguet              | 27,290   | 2,202      | 29,492  | 33,965   | 1,572      | 35,537  |
| Ifugao               | 22,590   | 1,090      | 23,680  | 31,173   | 1,106      | 32,279  |
| Kalinga              | 58,150   | 459        | 58,609  | 58,730   | 454        | 59,184  |
| Mountain<br>Province | 33,557   | 177        | 33,734  | 35,553   | 121        | 35,674  |

**Table 2.17.1** Poultry: Chicken Inventory by Animal Type, Farm Type, Provinces 2008 to 2018 (in heads)

|                      |         | 200    | 8         |           |         | 200    | 9         |           |
|----------------------|---------|--------|-----------|-----------|---------|--------|-----------|-----------|
|                      | Broiler | Layer  | Native    | Total     | Broiler | Layer  | Native    | Total     |
| CAR                  | 160,001 | 51,654 | 1,330,254 | 1,541,909 | 191,530 | 66,169 | 1,333,941 | 1,591,640 |
| Abra                 | •••     | 1,677  | 488,085   | 489,762   | 5,030   | 1,212  | 438,728   | 444,970   |
| Apayao               |         |        | 143,989   | 143,989   |         |        | 177,803   | 177,803   |
| Benguet              | •••     | 12,127 | 141,592   | 153,719   | 16,000  | 31,492 | 159,613   | 207,105   |
| Ifugao               | 155,000 | 37,850 | 259,162   | 452,012   | 169,000 | 33,465 | 253,031   | 455,496   |
| Kalinga              | 5,001   |        | 143,039   | 148,040   | 1,500   |        | 165,825   | 167,325   |
| Mountain<br>Province |         |        | 154,387   | 154,387   |         |        | 138,941   | 138,941   |

**Table 2.17.1** Poultry: Chicken Inventory by Animal Type, Farm Type, Provinces 2008 to 2018 (in heads)

(continued)

|                      |         | 201    | 2         |           |         | 201    | 3         |           |
|----------------------|---------|--------|-----------|-----------|---------|--------|-----------|-----------|
|                      | Broiler | Layer  | Native    | Total     | Broiler | Layer  | Native    | Total     |
| CAR                  | 3,141   | 61,079 | 1,458,879 | 1,523,099 | 4,898   | 70,654 | 1,541,796 | 1,617,348 |
| Abra                 | 3,141   | •••    | 444,037   | 447,178   | 4,898   | •••    | 436,283   | 441,181   |
| Apayao               |         | •••    | 169,054   | 169,054   | •••     | •••    | 179,712   | 179,712   |
| Benguet              | •••     | 21,861 | 222,994   | 244,855   |         | 33,803 | 257,091   | 290,894   |
| Ifugao               |         | 37,218 | 289,195   | 326,413   |         | 34,891 | 287,965   | 322,856   |
| Kalinga              | •••     |        | 182,766   | 182,766   |         | •••    | 229,484   | 229,484   |
| Mountain<br>Province |         | 2,000  | 150,833   | 152,833   |         | 1,960  | 151,261   | 153,221   |

Source: Philippine Statistics Authority

**Table 2.17.1** Poultry: Chicken Inventory by Animal Type, Farm Type, Provinces 2008 to 2018 (in heads) (continued)

|                      |         | 201     | 6         |           | 2017    |         |           |           |  |
|----------------------|---------|---------|-----------|-----------|---------|---------|-----------|-----------|--|
|                      | Broiler | Layer   | Native    | Total     | Broiler | Layer   | Native    | Total     |  |
| CAR                  | 4,300   | 137,734 | 1,422,218 | 1,564,252 | 11,888  | 130,697 | 1,327,960 | 1,470,545 |  |
| Abra                 | 4,300   |         | 271,640   | 275,940   | 4,297   |         | 254,900   | 259,197   |  |
| Apayao               |         |         | 177,399   | 177,399   | 7,591   |         | 142,697   | 150,288   |  |
| Benguet              |         | 23,335  | 181,365   | 204,700   |         | 13,942  | 174,777   | 188,719   |  |
| Ifugao               | •••     | 94,949  | 418,780   | 513,729   |         | 101,503 | 437,555   | 539,058   |  |
| Kalinga              |         | 4,000   | 212,040   | 216,040   |         | 3,991   | 163,467   | 167,458   |  |
| Mountain<br>Province |         | 15,450  | 160,994   | 176,444   |         | 11,261  | 154,564   | 165,825   |  |

|         | 201    | 0         |           |         | 201    | 1         |           |
|---------|--------|-----------|-----------|---------|--------|-----------|-----------|
| Broiler | Layer  | Native    | Total     | Broiler | Layer  | Native    | Total     |
| 37,500  | 69,593 | 1,369,198 | 1,476,291 | 319,374 | 59,147 | 1,416,794 | 1,795,315 |
| 2,000   | 540    | 431,053   | 433,593   | 6,374   | 250    | 432,237   | 438,861   |
| •••     |        | 165,162   | 165,162   |         |        | 168,815   | 168,815   |
| 18,000  | 34,378 | 146,928   | 199,306   | 9,000   | 22,442 | 209,103   | 240,545   |
| 16,000  | 34,675 | 286,277   | 336,952   | 304,000 | 35,275 | 281,266   | 620,541   |
| 1,500   |        | 185,925   | 187,425   |         |        | 176,475   | 176,475   |
| •••     |        | 153,853   | 153,853   |         | 1,180  | 148,898   | 150,078   |

|         | 201    | 4         |           | 2015    |         |           |           |  |
|---------|--------|-----------|-----------|---------|---------|-----------|-----------|--|
| Broiler | Layer  | Native    | Total     | Broiler | Layer   | Native    | Total     |  |
| 1,008   | 80,021 | 1,436,999 | 1,518,028 | 28,494  | 138,196 | 1,416,356 | 1,583,046 |  |
| 1,008   |        | 338,152   | 339,160   | 4,494   |         | 275,260   | 279,754   |  |
|         | •••    | 178,176   | 178,176   | 24,000  | •••     | 179,163   | 203,163   |  |
|         | 28,721 | 212,939   | 241,660   |         | 29,314  | 181,979   | 211,293   |  |
|         | 43,350 | 292,404   | 335,754   |         | 86,812  | 367,350   | 454,162   |  |
|         |        | 263,600   | 263,600   |         | 11,300  | 257,768   | 269,068   |  |
|         | 7,950  | 151,728   | 159,678   |         | 10,770  | 154,836   | 165,606   |  |
|         |        |           |           |         |         |           |           |  |

|         | 201     | 18        |           |
|---------|---------|-----------|-----------|
| Broiler | Layer   | Native    | Total     |
| 3,143   | 136,933 | 1,595,438 | 1,735,514 |
| 3,143   |         | 272,273   | 275,416   |
|         |         | 169,866   | 169,866   |
|         | 24,071  | 201,852   | 225,923   |
|         | 92,000  | 555,805   | 647,805   |
|         | 7,900   | 226,606   | 234,506   |
|         | 12,962  | 169,036   | 181,998   |
|         |         |           |           |

**Table 2.17.2** Poultry: Duck Inventory by Animal Type, Farm Type, Provinces 2008 to 2018 (in heads)

|                      |          | 2008       |         |          | 2009       |         | 20       | 2010       |  |
|----------------------|----------|------------|---------|----------|------------|---------|----------|------------|--|
|                      | Backyard | Commercial | Total   | Backyard | Commercial | Total   | Backyard | Commercial |  |
| CAR                  | 204,322  | 800        | 205,122 | 221,465  | 110        | 221,575 | 201,742  |            |  |
| Abra                 | 10,257   |            | 10,257  | 10,662   |            | 10,662  | 10,197   |            |  |
| Apayao               | 23,269   | 800        | 24,069  | 23,103   | 110        | 23,213  | 21,101   |            |  |
| Benguet              | 9,632    |            | 9,632   | 8,582    | •••        | 8,582   | 7,538    |            |  |
| Ifugao               | 76,106   |            | 76,106  | 86,571   |            | 86,571  | 75,234   |            |  |
| Kalinga              | 79,846   |            | 79,846  | 85,590   |            | 85,590  | 81,581   |            |  |
| Mountain<br>Province | 5,212    |            | 5,212   | 6,957    |            | 6,957   | 6,091    |            |  |

**Table 2.17.2** Poultry: Duck Inventory by Animal Type, Farm Type, Provinces 2008 to 2018 (in heads)

(continued)

|                      |          | 2013       |         |          | 2014       | 20      | 2015     |            |
|----------------------|----------|------------|---------|----------|------------|---------|----------|------------|
|                      | Backyard | Commercial | Total   | Backyard | Commercial | Total   | Backyard | Commercial |
| CAR                  | 192,850  |            | 192,850 | 192,025  | 305        | 192,330 | 205,027  |            |
| Abra                 | 11,192   |            | 11,192  | 10,290   |            | 10,290  | 8,883    | •••        |
| Apayao               | 24,637   |            | 24,637  | 24,771   | 305        | 25,076  | 24,834   |            |
| Benguet              | 3,530    |            | 3,530   | 4,654    | •••        | 4,654   | 7,044    |            |
| Ifugao               | 68,754   |            | 68,754  | 61,880   |            | 61,880  | 75,980   |            |
| Kalinga              | 77,810   | •••        | 77,810  | 80,140   | •••        | 80,140  | 81,293   |            |
| Mountain<br>Province | 6,927    |            | 6,927   | 10,290   |            | 10,290  | 6,993    |            |

|         |          | 2011       |         |          | 2012       |         |
|---------|----------|------------|---------|----------|------------|---------|
| Total   | Backyard | Commercial | Total   | Backyard | Commercial | Total   |
| 201,742 | 217,325  | •••        | 217,325 | 210,857  |            | 210,857 |
| 10,197  | 10,692   | •••        | 10,692  | 11,601   |            | 11,601  |
| 21,101  | 22,077   | •••        | 22,077  | 23,855   |            | 23,855  |
| 7,538   | 5,503    | •••        | 5,503   | 3,362    |            | 3,362   |
| 75,234  | 83,433   | •••        | 83,433  | 81,940   |            | 81,940  |
| 81,581  | 89,439   |            | 89,439  | 83,341   | •••        | 83,341  |
| 6,091   | 6,181    | •••        | 6,181   | 6,758    |            | 6,758   |

| 2016    |          |            |         | 2017     |            | 2018    |          |            |         |
|---------|----------|------------|---------|----------|------------|---------|----------|------------|---------|
| Total   | Backyard | Commercial | Total   | Backyard | Commercial | Total   | Backyard | Commercial | Total   |
| 205,027 | 209,051  |            | 209,051 | 248,155  |            | 248,155 | 297,038  |            | 97,038  |
| 8,883   | 8,410    |            | 8,410   | 7,990    | •••        | 7,990   | 6,994    | •••        | 6,994   |
| 24,834  | 25,541   |            | 25,541  | 25,068   | •••        | 25,068  | 26,763   | •••        | 26,763  |
| 7,044   | 7,310    | •••        | 7,310   | 5,839    |            | 5,839   | 5,487    | •••        | 5,487   |
| 75,980  | 76,000   |            | 76,000  | 113,065  | •••        | 113,065 | 159,765  |            | 159,765 |
| 81,293  | 84,963   | •••        | 84,963  | 89,210   | •••        | 89,210  | 91,254   | •••        | 91,254  |
| 6,993   | 6,827    |            | 6,827   | 6,983    |            | 6,983   | 6,775    |            | 6,775   |

Table 2.18 Volume of Evaporation by Month, Benguet State University Monitoring Station 2008 to 2018 (in millimeters)

| Year | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   | Annual  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| 2008 | 105.3 | 77.5  | 121.3 | 115.4 | 86.0  | 115.4 | 90.3  | 69.8  | 83.4  | 125.5 | 96.8  | 108.6 | 1,195.3 |
| 2009 | 104.5 | 100.6 | 112.1 | 107.5 | 105.1 | 79.8  | 100.9 | 84.2  | 64.8  | 77.3  | 112.1 | 129.0 | 1,177.9 |
| 2010 | 151.9 | 152.3 | 182.6 | 181.4 | 147.3 | 138.9 | 131.2 | 143.8 | 144.5 | 142.7 | 148.9 | 163.2 | 1,828.7 |
| 2011 | 162.9 | 82.1  | 163.6 | 169.6 | 158.8 | 166.3 | 126.4 | 89.1  | 107.7 | 141.6 | 160.1 | 171.2 | 1,699.4 |
| 2012 | 180.8 | 175.5 | 201.1 | 202.7 | 208.9 | 183.3 | 155.6 | 47.4  | 147.5 | 175.2 | 190.3 | 210.8 | 2,079.1 |
| 2013 | 185.2 | 204.3 | 227.3 | 234.3 | 221.4 | 226.6 | 249.6 | 157.4 | 221.6 | 244.6 | 241.7 | 234.7 | 2,648.7 |
| 2014 | 120.0 | 86.5  | 110.5 | 82.9  | 87.3  | 94.5  |       |       |       |       | 80.8  | 80.4  | 742.9   |
| 2015 | 88.4  | 79.2  | 109.5 | 100.3 | 103.5 | 86.0  | 40.2  | 65.5  | 78.7  | 73.7  | 102.4 | 87.8  | 1,015.2 |
| 2016 | 99.7  | 89.2  | 111.9 | 131.4 | 100.6 | 95.5  | 76.8  | 48.9  | 84.0  | 75.5  | 77.6  | 86.3  | 1,077.4 |
| 2017 | 86.0  | 83.7  | 106.2 | 122.9 | 87.9  | 114.7 | 96.0  | 84.9  | 82.6  | 75.1  | 76.5  |       | 1,016.5 |
| 2018 | 81.7  | 91.6  | 125.2 | 93.1  | 93.7  | 65.1  | 70.9  | 46.0  | 67.4  | 88.4  | 90.0  | 80.3  | 993.4   |

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

**Table 2.19** Summary of Water Permit Grants by Water Source, Type and Use 2008 to 2018 (in cubic meters per day)

| Туре       | Source | 2008      | 2009      | 2010      | 2011      | 2012      | 2013      | 2014      |
|------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Municipal  | GW     | 204.2     | 224.5     | 228.9     | 228.9     | 228.9     | 228.9     | 228.9     |
|            | SW     | 5,405.3   | 5,405.4   | 5,411.2   | 5,411.2   | 5,411.2   | 5,411.2   | 5,411.2   |
| Industrial | GW     | 24.1      | 37.1      | 37.1      | 37.1      | 37.1      | 37.1      | 37.1      |
|            | SW     |           |           |           |           |           |           |           |
| Irrigation | GW     | 11,544.8  | 11,544.8  | 11,544.8  | 11,544.8  | 11,544.8  | 11,544.8  | 11,518.3  |
|            | SW     | 192,147.2 | 192,147.2 | 192,147.2 | 192,147.2 | 192,147.2 | 192,147.2 | 191,807.1 |
| Power      | GW     |           |           |           |           |           |           |           |
|            | SW     | 332,167.2 | 332,167.2 | 332,167.2 | 332,167.2 | 278,946.1 | 278,946.1 | 278,946.1 |
| Domestic   | GW     | 20,296.2  | 20,296.2  | 20,296.2  | 20,296.2  | 20,295.9  | 20,295.9  | 20,203.4  |
|            | SW     | 4,965.6   | 4,965.6   | 4,965.6   | 4,965.6   | 4,965.6   | 4,965.6   | 4,965.6   |
| Livestock  | GW     |           |           |           |           |           |           |           |
|            | SW     | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |
| Recreation | GW     | 8.6       | 8.6       | 8.6       | 8.6       | 8.6       | 8.6       | 8.5       |
|            | SW     | 7.0       | 7.0       | 7.0       | 7.0       | 7.0       | 7.0       | 7.0       |
| Commercial | GW     | 206.4     | 206.4     | 206.4     | 206.4     | 206.4     | 206.4     | 201.1     |
|            | SW     | 1,447.2   | 1,447.2   | 1,447.2   | 1,447.2   | 1,447.2   | 1,447.2   | 1,447.2   |
| Total      | GW     | 32,284.2  | 32,317.5  | 32,321.9  | 32,321.9  | 32,321.6  | 32,321.6  | 32,197.2  |
|            | SW     | 536,139.6 | 536,139.6 | 536,145.5 | 536,145.5 | 482,924.3 | 482,924.3 | 482,584.3 |

Source: Philippine Atmospheric, Geophysical and Astronomical Services Administration, Department of Science and Technology

| 2015      | 2016      | 2017      | 2018      |
|-----------|-----------|-----------|-----------|
| 430.0     | 494.9     | 494.9     | 494.9     |
| 5,411.2   | 5,411.2   | 5,411.2   | 5,411.2   |
| 37.1      | 39.1      | 39.1      | 39.1      |
|           |           |           |           |
| 11,447.0  | 11,447.0  | 11,447.0  | 11,447.0  |
| 185,034.3 | 181,418.8 | 181,418.8 | 181,418.8 |
|           | ••        |           | ••        |
| 278,946.1 | 278,946.1 | 278,946.1 | 278,946.1 |
| 20,181.2  | 20,181.0  | 20,181.0  | 20,181.0  |
| 4,948.2   | 4,948.2   | 4,948.2   | 4,948.2   |
|           |           |           |           |
| 0.0       | 0.0       | 0.0       | 0.0       |
| 8.0       | 8.0       | 8.0       | 8.0       |
| 7.0       | 7.0       | 7.0       | 7.0       |
| 199.3     | 199.3     | 199.3     | 199.3     |
| 1,447.2   | 1,447.2   | 1,447.2   | 1,447.2   |
| 32,302.6  | 32,369.3  | 32,369.3  | 32,369.3  |
| 475,794.0 | 472,178.6 | 472,178.6 | 472,178.6 |





## **COMPONENT THREE RESIDUALS**

This component contains statistics on the amount and characteristics of residuals generated by human production and consumption processes, their management, and their final release to the environment. Residuals are flows of solid, liquid and gaseous materials, and energy, that are discarded, discharged or emitted by establishments and households through processes of production, consumption or accumulation. Residuals may be discarded, discharged or emitted directly to the environment or be captured, collected, treated, recycled or reused (UN FDES, 2013).

Residuals can have different impacts and effects on human and the environment. They could get absorbed into the environment and continue to exist depending on their nature, scale, and local environmental dynamics, such as wind and currents, as well as characteristics of land, air, and water masses. The volume and characteristics of residuals such as type, source, location and trends over time could be used for evidence-based policymaking specifically on the mitigation of their impact to humans and the ecosystem.

Component three covers emissions to air, generation and management of wastewater, generation and management of waste, and release of chemical substances. Its core statistics generally report on the amount, characteristics, treatment and management of these residuals. At present, it excludes statistics on release of chemical substances.

There are 19 core statistics under this component but only nine were gathered and reported in this compendium. The remaining statistics were not included due to unavailability of data. These are total emissions of greenhouse gases by gas such as, carbon dioxide; methane; and nitrous oxide; total volume of wastewater discharged after treatment; and without treatment; total municipal waste collected, amount of municipal waste treated by type of treatment and disposal; number of municipal waste treatment and disposal facilities; number of hazardous waste treatment and disposal facilities; and amount of recycled waste.

Statistics under this component have links to the different Sustainable Development Goals such as: Goal 2: End hunger, achieve food security and improved nutrition and promote sustainable agriculture; Goal 8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all; Goal 11: Make cities and human settlements inclusive, safe, resilient and sustainable; Goal 12: Ensure sustainable consumption and production patterns; Goal 13: Take urgent action to combat climate change and its impacts; Goal 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development; Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reserve land degredation and halt biodiversity loss (Sustainable Development Knowledge Platform).

## 3.1. **Emissions to air**

Air pollution can be caused by natural as well as anthropogenic factors. The FDES focuses on the emission of pollutants from anthropogenic factors that are socioeconomic processes. Emissions to air are gaseous and particulate substance released to the atmosphere by establishments and households as results of production, consumption and accumulation processes (UN FDES, 2013). Indicators on fuel and other material input data and emission factors can be used as indicators to measure or estimate air emissions. Statistics on greenhouse gas emission are useful for research, program and policy formulation. Greenhouse gas tends to increase the capacity of the atmosphere to hold heat, one of the drivers of global climate change. (UN FDES, 2013). Greenhouse gas emission inventories are compiled based on the guidelines developed by the Intergovernmental Panel on Climate Change, under the auspices of the United Nations Framework Convention on Climate Change (UNFCC). The Philippines ranks third globally when it comes to climate change vulnerability, and is more exposed due to its geographical location and environmental situation. In addition, the Philippines is seen to be more susceptible to extreme events and natural calamities due to climate change (Second National Communication to the United Nations Framework Convention on Climate Change, 1999).

The national ambient air quality guideline for nitrogen dioxide is set at 180 micrograms per normal cubic meters. Based on the result of the estimated nitrogen oxide emission from all sources in CAR, none of the years covered (2011 to 2018) fell below the indicated threshold. The highest estimated level was recorded in 2012 and 2013 both with 549.6 micrograms per normal cubic meter. The lowest was estimated in 2014 with 247.3 micrograms per normal cubic meter which was also higher by 64.9 percent than the national guideline.

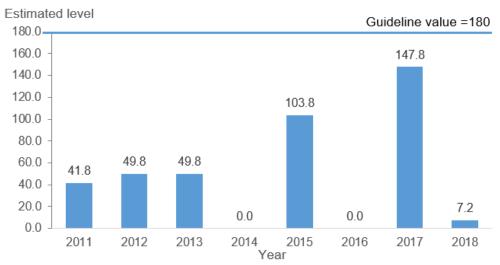

Estimated level 600.0 549.6 549.6 542.3 500.0 426.7 405.4 400.0 355.5 304.1 300.0 247.3 Guideline value = 180 200.0 100.0 0.0 2011 2013 2014 2017 2012 2015 2016 2018 Year

Figure 3.1 Estimated Nitrogen Oxide Emission from All Sources: 2011 to 2018, in micrograms per noral cubic meter

Source of basic data: Environmental Management Bureau

From 2011 to 2018, the estimated level of sulfur oxide were below the guideline set at 180 micrograms per normal cubic meters. The highest recorded level was seen in 2017 with 147.8 micrograms per normal cubic meters while the lowest was in 2018 with 7.2 micrograms per normal cubic meters. There were no estimated level of sulfur oxides in the years 2014 and 2016.

Figure 3.2 Estimated Sulfur Oxide Emission from All Sources: 2011 to 2018, in micrograms per noral cubic meter



Note: No estimates in 2014 and 2016

Source of basic data: Environmental Management Bureau

## 3.2. Generation and management of wastewater

This subcomponent deals with generation and management of wastewater. The framework defined wastewater as discarded water no longer required by the owner or user. They are either discharged into sewers, received by treatment facilities, discarded to the environment or reused without prior treatment. The data presented in this compendium only covers the households with access to the Baguio Sewerage Facility. It includes volume of wastewater collected, and wastewater treated. The framework also suggests to collect statistics on the number of wastewater disposal facilities but it is not yet included in this report.

In the span of 11 years, the volume of wastewater collected from households in the City of Baguio amounted to 24.1 million cubic meters. The highest volume was recorded in 2010 with 3.0 million cubic meters. On the average, 96.2 percent of the total volume collected were treated and discharged back to the environment.

Volume in MCM 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2008 2009 2012 2013 2010 2011 2014 2015 2016 2017 2018 Year

■ Collected ■ Treated

Figure 3.3 Volume of Wastewater Collected and Treated, Domestic Water, Baguio City: 2008-2018, (In million cubic meters)

Source of basic data: City Environment and Parks Management Office, Baguio City

## 3.3. Generation and management of waste

The framework defined waste as discarded material for which the owner or user has no further use. Humans generate waste in their daily activities such as in the course of production and consumption processes. It includes materials in solid or liquid state but excludes wastewater and emissions to air, water or soil.

It is imperative to compile statistics in the generation of waste because disposed solid waste on land and water have negative effects on human and the ecosystems. Human activities directly affect the environment and often lead to environmental changes in the form of depletion and degradation. To reduce the volume of generated waste, it is important to increase the amount of recycled waste and reuse them as material or source of energy. This is essential to ensure sustainable consumption, production and natural resource management.

The Environmental Management Bureau is mandated in the implementation of Republic Act No. 9003 or the Ecological Solid Waste Management Act of 2000 particularly, its Solid Waste Management Division (SWMD). This subcomponent reports only on the amount of hazardous waste generated and amount of hazardous waste treated. Other statistics under generation and management of waste are not available for compilation.

Table 3.3 shows the amount of generated hazardous waste by type of hazardous waste. Based on the available data, the amount of generated hazardous waste increased from 45,804 tons in 2015 to 124,993 tons in 2018 an average increment of 26,396.4 tons of waste yearly. Wastes with cyanide topped the hazardous wastes with 123,398 tons. Alkali wastes came second with 1,369 tons.





Table 3.1 **Estimated Nitrogen Oxide Emission (NOx) from All Sources** 2011 to 2018 (in micrograms per normal cubic meter)

| Region | 2011  | 2012  | 2013  | 2014  | 2014 2015 |       | 2017  | 2018  |
|--------|-------|-------|-------|-------|-----------|-------|-------|-------|
| CAR    | 542.3 | 549.6 | 549.6 | 247.3 | 405.4     | 426.7 | 304.1 | 355.5 |

 $Source: Environmental\ Management\ Bureau,\ Department\ of\ Environment\ and\ Natural\ Resources\ -\ Cordillera\ Administrative\ Region$ 

Table 3.2 **Estimated Sulfur Oxide Emission (SOx) from All Sources** 2011 to 2018

(in micrograms per normal cubic meter)

| Region           | 2011            | 2012             | 2013             | 2013 2014       |                   | 2016               | 2017       | 2018 |
|------------------|-----------------|------------------|------------------|-----------------|-------------------|--------------------|------------|------|
| CAR              | 41.8            | 49.8             | 49.8             | 0.0             | 103.8             | 0.0                | 147.8      | 7.2  |
| Source: Environm | antal Managaman | t Rurozu Donartr | nent of Environm | ont and Natural | Pacourcas - Cardi | illara Administrat | ivo Pogion |      |

Source: Environmental Management Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

Table 3.3 Volume of Wastewater Collected, Domestic Water, Baguio City 2008 to 2018 (in cubic meters)

|                                 | 2008                          | 2009                       | 2010                           | 2011      | 2012      | 2013      | 2014      | 2015      |
|---------------------------------|-------------------------------|----------------------------|--------------------------------|-----------|-----------|-----------|-----------|-----------|
| January                         | 186,523.1                     | 173,297.3                  | 245,795.9                      | 268,091.2 | 203,116.7 | 186,729.4 | 132,080.5 | 156,985.8 |
| February                        | 196,237.7                     | 168,797.7                  | 252,961.2                      | 227,027.3 | 240,173.7 | 179,598.1 | 137,519.7 | 164,132.3 |
| March                           | 195,138.3                     | 150,116.9                  | 287,139.2                      | 244,437.1 | 249,091.3 | 168,073.4 | 134,153.0 | 181,926.6 |
| April                           | 198,944.6                     | 185,586.1                  | 241,228.8                      | 249,357.3 | 196,169.5 | 140,789.2 | 136,201.3 | 109,092.3 |
| May                             | 199,676.0                     | 175,272.0                  | 237,270.0                      | 229,227.9 | 195,248.1 | 129,583.7 | 133,129.7 | 103,732.5 |
| Jun                             | 194,667.8                     | 195,922.5                  | 205,369.3                      | 249,089.5 | 207,506.0 | 123,538.6 | 143,944.0 | 114,534.1 |
| July                            | 248,708.2                     | 247,349.2                  | 272,809.4                      | 226,738.7 | 237,867.1 | 179,824.2 | 157,004.3 | 226,318.3 |
| August                          | 245,134.4                     | 234,084.7                  | 263,693.2                      | 205,798.0 | 245,657.8 | 178,867.6 | 167,957.0 | 179,445.4 |
| September                       | 230,924.0                     | 239,328.5                  | 262,065.6                      | 235,701.1 | 210,039.2 | 175,930.6 | 215,510.2 | 200,122.1 |
| October                         | 249,778.8                     | 268,328.1                  | 239,618.0                      | 197,297.0 | 186,873.8 | 156,313.7 | 180,867.6 | 216,086.7 |
| November                        | 206,716.3                     | 263,745.1                  | 231,131.4                      | 170,489.3 | 152,572.5 | 144,062.2 | 157,565.5 | 155,264.3 |
| December<br>Source: City Enviro | 166,417.7<br>onment and Parks | 235,774.6<br>Management Of | 246,213.0<br>fice, Baguio City | 210,168.0 | 149,385.4 | 96,968.2  | 136,052.6 | 168,613.0 |

| 2016      | 2017      | 2018      |
|-----------|-----------|-----------|
| 144,791.0 | 159,859.4 | 116,492.1 |
| 133,972.5 | 145,870.5 | 160,479.3 |
| 156,243.3 | 144,418.6 | 185,100.3 |
| 159,068.2 | 123,460.5 | 160,076.7 |
| 137,319.0 | 156,579.8 | 166,629.8 |
| 143,704.9 | 131,523.5 | 108,304.0 |
| 108,122.6 | 141,754.1 | 122,382.8 |
| 213,915.0 | 158,660.6 | 179,836.9 |
| 195,618.1 | 137,852.6 | 125,179.1 |
| 163,370.0 | 135,685.1 | 111,022.3 |
| 175,605.5 | 131,350.1 | 91,731.7  |
| 177,333.2 | 122,680.2 | 89,110.3  |

Table 3.4 Volume of Wastewater Treated, Domestic Water, Baguio City 2008 to 2018 (in cubic meters)

|                                 | 2008                          | 2009                       | 2010                        | 2011      | 2012      | 2013      | 2014      | 2015      |
|---------------------------------|-------------------------------|----------------------------|-----------------------------|-----------|-----------|-----------|-----------|-----------|
| January                         | 186,523.1                     | 173,297.3                  | 245,795.9                   | 268,091.2 | 203,116.7 | 186,729.4 | 132,080.5 | 156,985.8 |
| February                        | 196,237.7                     | 168,797.7                  | 252,961.2                   | 227,027.3 | 240,173.7 | 179,598.1 | 137,519.7 | 164,132.3 |
| March                           | 195,138.3                     | 150,116.9                  | 287,139.2                   | 244,437.1 | 249,091.3 | 168,073.4 | 134,153.0 | 181,926.6 |
| April                           | 198,944.6                     | 185,586.1                  | 241,228.8                   | 249,357.3 | 196,169.5 | 140,789.2 | 136,201.3 | 109,092.3 |
| May                             | 199,676.0                     | 175,272.0                  | 237,270.0                   | 229,227.9 | 195,248.1 | 129,583.7 | 133,129.7 | 103,732.5 |
| June                            | 194,667.8                     | 195,922.5                  | 205,369.3                   | 249,089.5 | 207,506.0 | 123,538.6 | 143,944.0 | 114,534.1 |
| July                            | 248,708.2                     | 247,349.2                  | 272,809.4                   | 226,738.7 | 237,867.1 | 179,824.2 | 157,004.3 | 226,318.3 |
| August                          | 245,134.4                     | 234,084.7                  | 263,693.2                   | 205,798.0 | 245,657.8 | 178,867.6 | 167,957.0 | 179,445.4 |
| September                       | 230,924.0                     | 239,328.5                  | 262,065.6                   | 235,701.1 | 210,039.2 | 175,930.6 | 215,510.2 | 200,122.1 |
| October                         | 249,778.8                     | 268,328.1                  | 239,618.0                   | 197,297.0 | 186,873.8 | 156,313.7 | 180,867.6 | 216,086.7 |
| November                        | 206,716.3                     | 263,745.1                  | 231,131.4                   | 170,489.3 | 152,572.5 | 144,062.2 | 157,565.5 | 155,264.3 |
| December<br>Source: City Enviro | 166,417.7<br>onment and Parks | 235,774.6<br>Management Of | 246,213.0 fice, Baguio City | 210,168.0 | 149,385.4 | 96,968.2  | 136,052.6 | 168,613.0 |

Table 3.5 Amount of Generated Hazardous Waste by Type of Hazardous Waste 2015 to 2019 (in tons)

| YEAR | Wastes with<br>Cyanide | Acid Wastes | Alkali Wastes | Inorganic<br>Chemical Wastes | Reactive<br>Chemical Wastes | Organic<br>Solvent | Putrescible/<br>Organic Wastes |
|------|------------------------|-------------|---------------|------------------------------|-----------------------------|--------------------|--------------------------------|
| 2015 | 44,792.4               | 0.0         | 908.3         | 4.1                          | 0.0                         | 18.1               | 8.0                            |
| 2016 | 5,234.7                | 77.0        | 671.5         | 9.5                          | 0.2                         | 7.0                | 8.0                            |
| 2017 | 47,804.6               | 0.3         | 244.7         | 18.7                         | 2.7                         | 7.4                | 11.9                           |
| 2018 | 123,398.0              | 1.5         | 1,369.2       | 73.2                         | 19.1                        | 10.8               | 6.6                            |

Source: Environmental Management Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

Table 3.6 Amount of Treated Hazardous Waste by Type of Hazardous Waste 2015 to 2019 (in tons)

| YEAR | Wastes with<br>Cyanide | Acid Wastes | Alkali Wastes | Inorganic<br>Chemical Wastes | Reactive<br>Chemical Wastes | Organic<br>Solvent | Putrescible/<br>Organic Wastes |
|------|------------------------|-------------|---------------|------------------------------|-----------------------------|--------------------|--------------------------------|
| 2015 | 57,261.2               | -           | 0.3           | 2.8                          | -                           | 17.2               | 0.0                            |
| 2016 | 5,234.7                | 0.4         | 359.1         | 20.2                         | -                           | 75.3               | 3.5                            |
| 2017 | 47,639.1               | 0.1         | 2.7           | 14.1                         | 0.0                         | 5.4                | 6.9                            |
| 2018 | 124,451.4              | 1.7         | 1,401.2       | 369.7                        | 2.3                         | 9.0                | 3.9                            |

Source: Environmental Management Bureau, Department of Environment and Natural Resources - Cordillera Administrative Region

| 2016      | 2017      | 2018      |
|-----------|-----------|-----------|
| 144,791.0 | 159,859.4 | 116,492.1 |
| 133,972.5 | 145,870.5 | 160,479.3 |
| 156,243.3 | 144,418.6 | 185,100.3 |
| 159,068.2 | 123,460.5 | 160,076.7 |
| 137,319.0 | 156,579.8 | 166,629.8 |
| 143,704.9 | 131,523.5 | 108,304.0 |
| 108,122.6 | 141,754.1 | 122,382.8 |
| 213,915.0 | 158,660.6 | 179,836.9 |
| 195,618.1 | 137,852.6 | 125,179.1 |
| 163,370.0 | 135,685.1 | 111,022.3 |
| 175,605.5 | 131,350.1 | 91,731.7  |
| 177,333.2 | 122,680.2 | 89,110.3  |

| Containers | Immobilized<br>Wastes | Organic<br>Chemicals | Miscellanous<br>Wastes                                                                                                                                     | Total                                                                                                                                                                                                          |
|------------|-----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.6        | -                     | 62.4                 | 3.9                                                                                                                                                        | 45,804.1                                                                                                                                                                                                       |
| 3.4        | -                     | 72.9                 | 3.0                                                                                                                                                        | 6,109.2                                                                                                                                                                                                        |
| 5.6        | -                     | 68.0                 | 10.1                                                                                                                                                       | 48,219.6                                                                                                                                                                                                       |
| 1.5        | 2.9                   | 2.4                  | 12.9                                                                                                                                                       | 124,993.3                                                                                                                                                                                                      |
|            | 1.6<br>3.4<br>5.6     | 1.6 - 3.4 - 5.6 -    | Containers         Wastes         Chemicals           1.6         -         62.4           3.4         -         72.9           5.6         -         68.0 | Containers         Wastes         Chemicals         Wastes           1.6         -         62.4         3.9           3.4         -         72.9         3.0           5.6         -         68.0         10.1 |

| Oil   | Containers | Immobilized<br>Wastes | Organic<br>Chemicals | Miscellanous<br>Wastes | Total     |
|-------|------------|-----------------------|----------------------|------------------------|-----------|
| 6.6   | 3.9        | -                     | 61.1                 | 3.6                    | 57,356.6  |
| 20.9  | 0.5        | -                     | -                    | 2.0                    | 5,716.6   |
| 96.3  | 4.4        | -                     | -                    | 11.0                   | 47,780.0  |
| 103.9 | 2.8        | 3.2                   | 15.7                 | 11.9                   | 126,376.8 |





# **COMPONENT FOUR EXTREME EVENTS AND DISASTERS**

This component organizes statistics regarding the occurrence of extreme events and disasters and their impacts on human well-being and on the infrastructure of the human subsystem. It contains two subcomponents, namely, (1) natural extreme events and disasters and (2) technological disasters. There are four core statistics identified under the first subcomponent, two of which have available data and are included in this report. The data were gathered from the subnational authority responsible for disaster risk reduction and management which is the Office of the Civil Defense (OCD).

Natural extreme events and disasters takes into account the frequency and intensity of extreme events and disasters that resulted from natural phenomena (e.g. typhoons and earthquakes) and their impact on human lives and habitats and the environment as a whole. The four core statistics under this subcomponent are (1) type of natural disaster, (2) location of the event, (3) number of people killed during the event, and (4) economic loss incurred during the event. However, data on the exact location of the natural extreme events and disasters is not available in national and subnational level and data for the economic loss in the region follow a different format of reporting.

The Centre for Research on the Epidemiology of Disasters (CRED) defines a disaster as an unforeseen and often sudden event that causes great damage, destruction and human suffering (UN FDES, 2013). In the country, the National Disaster Risk Reduction Management Council (NDRRMC) identifies events as disasters when they become "serious disruptions of the functioning of a community or a society involving widespread human, material, economic or environmental losses and impacts, which exceeds the ability of the affected community or society to cope using its own resources."

Technological disasters, on the other hand, consider disasters that resulted from human intent, negligence or error, or from faulty or failed technological applications. CRED recognizes three types of technological disasters namely, (1) industrial disasters that cover leakages of fluid toxic chemicals, oil spills and explosions; (2) transport disasters that cover accidents associated with the mechanized transport of chemicals, volatile materials or other hazardous substance by road, rail, water or pipeline; and (3) miscellaneous disasters such as arson fires and other disasters of varied origin.

The statistics presented in this component have links to the Sustainable Development Goals (SDGs): Goal 1: End poverty in all its forms everywhere; Goal 2: End hunger, achieve food security and improved nutrition and promote sustainable agriculture; Goal 11: Make cities and human settlement inclusive, safe, resilient and sustainable; and Goal 13: Take urgent action to combat climate change and its impact (Sustainable Development Knowledge Platform).

#### 4.1. Natural extreme events and disasters

Statistics on natural extreme events and disasters are important to policy-makers, analysts and civil society not only to assess the impact of an ongoing disaster, but also to monitor the frequency, intensity and impact of disasters over time (UN FDES, 2013). Two topics were discussed under this subcomponent. These are the occurence and the impact of natural extreme events and disasters.

### 4.1.1. Occurrence of natural extreme events and disasters

The core statistics included in this topic are type of natural extreme event and disaster, and location. The CRED Emergency Events Database (CRED EM-DAT) classified natural disasters into five subgroups, namely: geophysical, climatological, meteorological, hydrological and biological disasters. Geophysical disasters are events originating from the solid earth. Climatological disasters are events caused by longlived processes in the spectrum from intra-seasonal to multi-decadal climate variability. Meteorological disasters are events caused by short-lived processes in the spectrum from minutes to days. Hydrological disasters are events caused by deviations in the normal water cycle and/or overflow of bodies of water caused by wind setup. Lastly, biological disasters are events caused by exposure of living organisms to germs and toxic substances.

However, due to limited data in the region, the only statistics presented in this topic is the number of tropical cyclones from 2008 to 2018. The data provided by the Office of the Civil Defense – CAR (OCD-CAR) showed that the region recorded the highest number of tropical cyclones in 2015 with a total of 11 times. On the other hand, 2010 recorded the least with only one tropical cyclone.

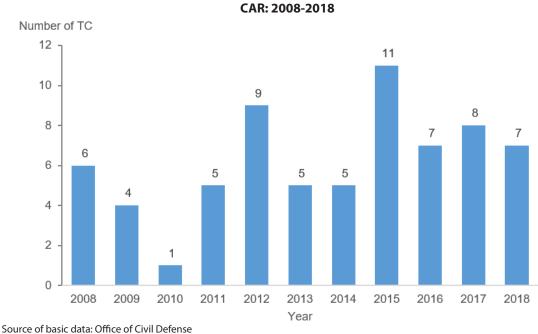



Figure 4.1 Number of Tropical Cyclones,

## 4.1.2. Impact of natural extreme events and disasters

Number of people killed and economic loss due to natural extreme events and disasters are the two core statistics under this topic to measure the impact of natural extreme disasters and events.

According to FDES, economic loss may pertain to damages to buildings and other economic assets, number of transportation networks affected, economic disruption or loss of revenue to commercial services and utility disruption. Loss is measured according to currency.

Economic loss data from OCD-CAR reported number of damage houses and the cost of damage to agriculture and infrastructure due to tropical cyclones. The data showed that 2016 posted the biggest economic loss with a total of 43,470 damaged houses of which 93.3 percent or 40,553 were partially damaged and the remaining 6.7 percent or 2,917 were totally damaged. A total of Php 7.3 billion was also recorded in 2016 of which 52.8 percent or 3.9 billion pesos were the damage to agriculture and 47.2 percent or 3.4 billion were the damage to infrastructure.

Although 2016 posted the biggest economic loss, it was in 2009 where the affected population and casualties reported the highest. There were a total of 444,944 persons and 91,610 families affected due to the 4 tropical cyclones recorded in 2009. The recorded casualties totaled to 577 persons where 354 of them were dead, 211 were injured and 12 were missing.

Estimated cost 4,000.0 3,500.0 3,000.0 2,500.0 2,000.0 1,500.0 1.000.0 500.0 0.0 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Year Damage to Agriculture Damage to Infrastructure

Figure 4.2 Estimated Cost of Damage Due to Tropical Cyclones, CAR: 2008-2018 (In million pesos)

Source of basic data: Office of Civil Defense

#### 4.2. **Human-induced disasters**

Compiling statistics on human-induced disasters is important to identify the immediate and potential impacts, to understand who is ultimately responsible and to assess and mitigate future risks. Records of technological disasters in the global setting show increasing frequency and impact on humans, infrastructure and the environment.

The occurrence and impact of technological disasters are the two topics presented in this subcomponent. The framework did not identify the core statistics for this subcomponent and there were also no collected data due to the limitation of the reporting tool being used by OCD-CAR.

## 4.2.1. Occurence of technological disasters

This topic gathers information on the frequency and nature of technological disasters. These disasters impact human lives, habitats and ecosystems in various ways, depending on the nature and intensity of the disaster. The duration of their effects may last in a short period or may be significant or unknown. There is sometimes no precedent for a given disaster for technological disasters. Therefore, the full impact of such disasters cannot always be fully anticipated or measured.

### 4.2.2. Impact of technological disasters

Technological disasters may also affect the economy of a country. Economic loss is also measured by the damages of infrastructures and other economic assets. economic loss aside from damaged houses.





# **STATISTICAL TABLES Extreme Events and Disasters**

Table 4.1 **Number of Tropical Cyclones, Affected Population and Casualties** 2008 to 2018

| Item                              | 2008    | 2009    | 2010    | 2011    | 2012   | 2013   | 2014   | 2015    | 2016 | 2017 | 2018   |
|-----------------------------------|---------|---------|---------|---------|--------|--------|--------|---------|------|------|--------|
| Number<br>of Tropical<br>Cyclones | 6       | 4       | 1       | 5       | 9      | 5      | 5      | 11      | 7    | 8    | 7      |
|                                   |         |         |         |         |        |        |        |         |      |      |        |
| Affected<br>Population            |         |         |         |         |        |        |        |         |      |      |        |
| Families                          | 19,938  | 91,610  | 66,540  | 21,484  | 2,851  | 10,372 | 16,646 | 51,945  | 221  | 154  | 9,051  |
| Persons                           | 103,931 | 444,944 | 357,476 | 107,638 | 10,504 | 48,045 | 73,760 | 350,521 | 827  | 562  | 84,124 |
|                                   |         |         |         |         |        |        |        |         |      |      |        |
| Casualties                        |         |         |         |         |        |        |        |         |      |      |        |
| Dead                              | 30      | 354     | 6       | 30      | 8      | 3      | -      | 57      | 16   | 2    | 101    |
| Injured                           | 48      | 211     | 25      | 46      | 6      | 35     | 5      | 27      | 4    | 1    | 45     |
| Missing                           | 4       | 12      | -       | 4       | -      | 3      | 2      | 2       | 1    | -    | 9      |

Source: Office of Civil Defense

Table 4.2 **Estimated Cost of Damage Due to Tropical Cyclones** 2008 to 2018 (Damage to Agriculture and Infrastructure in million pesos)

| Item                        | 2008  | 2009    | 2010    | 2011    | 2012  | 2013    | 2014  | 2015    | 2016    | 2017  | 2018  |
|-----------------------------|-------|---------|---------|---------|-------|---------|-------|---------|---------|-------|-------|
| Damage to Houses            |       |         |         |         |       |         |       |         |         |       |       |
| Totally damaged houses      | 137   | 1,238   | 2,048   | 219     | 22    | 322     | 84    | 343     | 2917    | -     | 408   |
| Partially damaged houses    | 1,275 | 6,607   | 11,899  | 3,239   | 154   | 3,681   | 2,191 | 3,355   | 40,553  | 8     | 2,737 |
|                             |       |         |         |         |       |         |       |         |         |       |       |
| Damage to<br>Agriculture    | 221.8 | 983.3   | 791.5   | 1,321.5 | 68.5  | 379.9   | 81.7  | 1,103.3 | 3,873.6 | 312.8 | -     |
|                             |       |         |         |         |       |         |       |         |         |       |       |
| Damage to<br>Infrastructure | 498.5 | 2,666.4 | 613.7   | 1,249.3 | 177.9 | 704.9   | 94.7  | 2,933.8 | 3,456.9 | 63.4  | -     |
|                             |       |         |         |         |       |         |       |         |         |       |       |
| Total Cost of<br>Damage     | 720.3 | 3,649.6 | 1,405.2 | 2,570.8 | 246.5 | 1,084.7 | 176.4 | 4,037.1 | 7,330.5 | 376.1 | -     |

Source: Office of Civil Defense





# **COMPONENT FIVE HUMAN SETTLEMENTS AND ENVIRONMENTAL HEALTH**

Component 5 covers statistics on environment where humans live and work, specifically on their living conditions and environmental health. This component has two subcomponents: (1) human settlements and (2) environmental health. Human settlements include statistics that describes the basic services and infrastructure where humans live and work. FDES further defined human settlement as the human population that resides in a settlement, physical elements (e.g., shelter and infrastructure), services (e.g., water, sanitation, waste disposal, and transport), and the exposure of humans to potentially deleterious environmental conditions.

The other subcomponent is environmental health that focuses on how environmental factors and processes impact and change human health. It organizes statistics on mortality, morbidity, and incidence associated with specific types of diseases and conditions that are heavily influenced by environmental conditions. The World Health Organization (2012) defined environmental health as "those aspects of the human health and disease that are determined by factors in the environment. It also refers to the theory and practice of assessing and controlling factors in the environment that can potentially affect health."

This component contains 12 core statistics, seven of which are reported in this compendium. Falling under human settlements are (1) population using an improved drinking water source; (2) population using an improved sanitation facility; and (3) number of private and public vehicles. For environmental health, available data are (1) incidence of water-related diseases; (2) mortality of water related diseases; (3) incidence of vectorborne diseases; and (4) mortality of vector-borne diseases.

The statistics in component five can be used as indicators to monitor the achievement of the Sustainable Development Goals, specifically, to ensure healthy lives and promote well-being for all at all ages (SDG 3), to ensure access to water and sanitation for all (SDG 6), and to make cities inclusive, safe, resilient and sustainable (SDG 11). The subcomponents also contains statistics related to ensuring access to affordable, reliable, sustainable and modern energy for all (SDG 7) and taking urgent action to combat climate change and its impacts (SDG 13).

#### 5.1. **Human settlements**

Human settlements include relevant statistics on basic services and infrastructure. Statistics gathered for this subcomponent give information to policymakers, analysts and civil society on how the residents work and live in their settlements, how they transform the landscape and supporting ecosystem and how it affects the resident's well-being and health. Out of the five topics under this subcomponent, only two topics (i.e. access to selected basic services and environmental concerns specific to urban habitats) is presented in this compendium. The data are gathered from the census of population and housing of PSA.

## 5.1.1. Access to water, sanitation and energy (Access to selected basic services)

Statistics regarding water and sanitation describe the access of the population to safe water sources and adequate sanitation facilities. The data for this subcomponent were taken from the 2010 Census of Population and Housing of PSA. It includes access to improved drinking water quality and improved sanitation facility.

In 2010, majority of the households in the region sourced their drinking water supply from community water system. Bottled water came second with 23 percent share. Households who get their dinking water from wells and springs comprised 20 percent and 13 percent of the total households, respectively.

Others 1% **Community Water** System 43% **Bottled Water** 23%

Figure 5.1 Distribution of Households by Source of Drinking Water Supply, CAR: 2010

Source: Philippine Statistics Authority, 2010 Census of Population and Housing

Households with access to water-sealed sewer septic tank were 68 percent of the total 352,403 households in CAR. Out of the 21 percent of the total household who classified their toilet facility used as pit, 42.9 percent of them responded that they were still using open pit while 57.1 were using closed pit. Meanwhile, two percent or 7,203 households still had no access to any toilet facility in 2010.

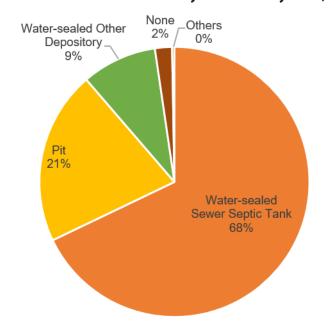



Figure 5.2 Distribution of Households by Toilet Facility Used, CAR: 2010

Source: Philippine Statistics Authority, 2010 Census of Population and Housing

## 5.1.2. Environmental concerns specific to urban habitats

This topic has only one core statistics, that is, the number of private and public vehicles. The number of motor vehicles registered by type of registration for the years 2015 to 2018 was gathered as an indicator for this subcomponent. Data were gathered from the Department of Transportation - Land Transportation Office (DOTr – LTO).

The DOTr-LTO reports seven types of motor vehicles including cars, utility vehicles (UV), sports utility vehicle (SUV), trucks, buses, trailers and motorcycles/tricycles. In 2018, a total of 169,235 vehicles were registered of which 90 percent where renewed and 10 percent were newly registered. Out of the total registered vehicles, 87.2 percent were private vehicles, 11.5 percent were vehicles that are for hire and only 1.3 percent were government vehicles.

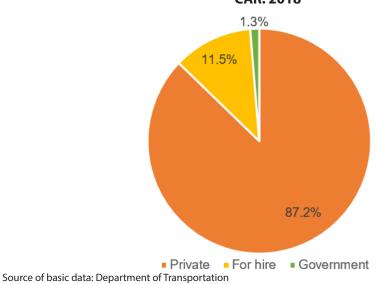



Figure 5.3 Distribution of Registered Vehicles by Type of Vehicle, **CAR: 2018** 

#### 5.2. **Environmental health**

Environmental health focuses on how the environmental factors and processes affect and alter the health of an individual. Statistics that are usually gathered here are morbidity (incidence and prevalence) and mortality of certain types of diseases.

The subcomponent has five topics wherein only water related diseases and conditions, and vector borne diseases have core statistics.

## 5.2.1. Water-related diseases and conditions

This topic includes all water related diseases and conditions that resulted from the ingestion of chemicals and micro-organisms. These include diseases caused by bacteria, viruses, protozoa, waterborne parasite infection and chemical contamination of water.

The framework recommends to compile statistics on the incidence (the rate of occurrence of new cases of disease), prevalence (part of population with a disease at a given time period) and mortality (number of deaths by place, time and cause) of water-borne diseases. However, only data on prevalence and mortality were compiled for this publication.

There are eight diseases and conditions presented in this compendium. These pertain to the number of

cases and deaths of diarrheas, acute respiratory tract infection and pneumonia, typhoid and paratyphoid fever, viral hepatitis, leprosy schistosomiasis, filariasis and leptospirosis. These data were gathered from the Department of Health (DOH) covering the period 2008-2018.

Diarrhea and pneumonia were the most prevalent water-borne diseases in the region. Pneumonia recorded the highest in 2010 with 33,305 cases, where 41.6 percent or 13,850 cases were diagnosed in the province of Benguet. The lowest recorded number of pneumonia was observed in 2016 with 10,715 cases. Meanwhile, diarrhea recorded the highest in 2015 with 24,412 number of cases of which majority of the recorded cases was seen in Baguio City with 7,460 persons affected. The least number of diarrhea cases was recorded in 2009 with 5,529 cases.

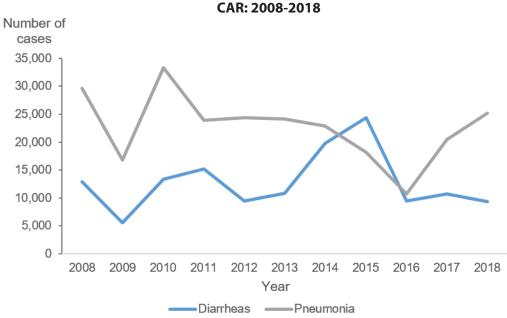



Figure 5.4 Number of Cases of Diarrhea and Pneumonia,

Source of basic data: Department of Health - CAR

### 5.2.2. Vector borne diseases

The framework defined vector-borne diseases as those diseases that are transmitted by organisms such as insects and arachnids that carry viruses, bacteria, protozoa and other pathogens. Statistics on vectorborne diseases were gathered from the Department of Health (DOH). These include the number of cases and deaths for dengue and malaria.

Number of cases and deaths from dengue posted the highest in 2011 with 2,767 and 35, respectively. The total reported cases of dengue was 10,705 from 2008 to 2018. There were no cases recorded for the years 2014 and 2018. Malaria, on the other hand, posted the highest in 2008 with 150 cases and nine deaths.

CAR: 2008-2018 Number of Number of cases deaths 3,000 40 35 2,500 30 2,000 25 1,500 20 15 1,000 10 500 5 0 0 2012 2013 2014 2015 2016 2017 2018 2008 2009 2010 2011 Year

Cases ——Deaths

Figure 5.5 Number of Cases and Deaths from Dengue,

Source of basic data: Department of Health - CAR





# **STATISTICAL TABLES Human Settlements and Environmental** Health

Table 5.1 Number of Households by Main Source of Water Supply for Drinking and/or Cooking of Households by Kind of Toilet Facility Used and by Region 2000 and 2010

|        | Total Num                     | show of |                                           | Sou    | rces of Water Su        | pply for Drink | ing                              |        |
|--------|-------------------------------|---------|-------------------------------------------|--------|-------------------------|----------------|----------------------------------|--------|
| Region | Total Number of<br>Households |         | Own Use Faucet,<br>Community Water System |        | Shared For Community Wa |                | Own Use Tubed/Piped<br>Deep Well |        |
|        | 2000                          | 2010    | 2000                                      | 2010   | 2000                    | 2010           | 2000                             | 2010   |
| CAR    | 263,851                       | 352,403 | 90,530                                    | 94,451 | 70,764                  | 56,279         | 13,066                           | 16,111 |

Table 5.1 Number of Households by Main Source of Water Supply for Drinking and/or Cooking of Households by Kind of Toilet Facility Used and by Region (continued) 2000 and 2010

| Sources of Water Supply for Drinking |                                    |                     |                       |                                      |       |       |  |  |  |
|--------------------------------------|------------------------------------|---------------------|-----------------------|--------------------------------------|-------|-------|--|--|--|
| Region                               | Spring, Lake, River,<br>Rain, etc. | Protected<br>Spring | Unprotected<br>Spring | Lake, river, rain and Peddler others |       | er    |  |  |  |
|                                      | 2000                               | 2010                | 2010                  | 2000                                 | 2000  | 2010  |  |  |  |
| CAR                                  | 32,392                             | 32,391              | 12,201                | 2,729                                | 4,241 | 2,887 |  |  |  |

Source: Philippine Statistics Authority

Table 5.2 Number of Households by Kind of Toilet Facility Used and by Region 2000 and 2010

|        |                            |         |                                         | Kind of Toile | et Facility                                                            |        |
|--------|----------------------------|---------|-----------------------------------------|---------------|------------------------------------------------------------------------|--------|
| Region | Total Number of Households |         | Water-sealed Sewe<br>Used Exclusively b | •             | Water-sealed Sewer Septic<br>Tank Used Shared with Other<br>Households |        |
|        | 2000                       | 2010    | 2000 2010                               |               | 2000                                                                   | 2010   |
| CAR    | 263,851                    | 352,403 | 96,578                                  | 200,930       | 23,330                                                                 | 38,331 |

Source: Philippine Statistics Authority

Table 5.2 Number of Households by Kind of Toilet Facility Used and by Region (continued) 2000 and 2010

| Kind of Toilet Facility |          |        |        |        |                                 |      |  |  |  |
|-------------------------|----------|--------|--------|--------|---------------------------------|------|--|--|--|
| Region                  | Closed F | Pit    | Open P | it     | Others (Pail System and Others) |      |  |  |  |
|                         | 2000     | 2010   | 2000   | 2010   | 2000                            | 2010 |  |  |  |
| CAR                     | 38,891   | 41,855 | 53,377 | 31,415 | 1,764                           | 973  |  |  |  |

| Shared Tubed/Piped<br>Deep Well |        |        | Tubed/Piped<br>Wel |       | Dug Well |        |  |
|---------------------------------|--------|--------|--------------------|-------|----------|--------|--|
|                                 | 2000   | 2010   | 2000               | 2010  | 2000     | 2010   |  |
|                                 | 25,930 | 31,956 | 10,528             | 8,730 | 10,613   | 11,800 |  |

| Bottled 1 | Water  | Others |       |  |  |
|-----------|--------|--------|-------|--|--|
| 2000      | 2010   | 2000   | 2010  |  |  |
| 1,038     | 81,264 | 4,749  | 1,604 |  |  |

| Water-sealed Othe<br>Used Exclusively b |        | Water-sealed Oth |        |
|-----------------------------------------|--------|------------------|--------|
| 2000                                    | 2010   | 2000             | 2010   |
| 28,580                                  | 21,552 | 11,972           | 10,145 |

| None  |       |
|-------|-------|
| 2000  | 2010  |
| 9,359 | 7,203 |

**Table 5.3.1** Number of Motor Vehicles Registered by Type, Fuel Used, Year and Province 2018

| District Office       | Fi     | rst Quarte | er  | Sec    | ond Quar | ter | Th     | ird Quart | er  | Fourth ( | Quarter |
|-----------------------|--------|------------|-----|--------|----------|-----|--------|-----------|-----|----------|---------|
|                       | Gas    | Diesel     | LPG | Gas    | Diesel   | LPG | Gas    | Diesel    | LPG | Gas      | Diesel  |
| CAR                   | 17,045 | 13,119     | 3   | 26,632 | 20,985   | 9   | 27,841 | 21,014    | 12  | 17,101   | 10,425  |
| Cars                  | 2,107  | 420        | 3   | 3,095  | 186      | 6   | 3,426  | 12        | 2   | 1,618    | 27      |
| Utility Vehicles      | 1,626  | 11,310     | _   | 2,552  | 18,422   | 3   | 2,700  | 19,043    | 4   | 1,216    | 9,203   |
| Motorcycles/Tricycles | 13,310 | -          | -   | 0,985  | 303      | -   | 21,715 | -         | -   | 14,267   | -       |
| Trucks                | 2      | 1,341      | -   | -      | 2,004    | -   | -      | 1,906     | -   | -        | 1,161   |
| Trailers              | -      | 13         | -   | -      | 6        | -   | -      | 4         | -   | -        | -       |
| Buses                 | -      | 35         | -   | -      | 64       | -   | -      | 49        | 6   | -        | 34      |
| Abra                  | 3,367  | 675        | _   | 5,461  | 1,069    | _   | 7,151  | 1,202     | -   | 3,717    | 536     |
| Cars                  | 181    | 29         | _   | 271    | 6        | _   | 400    | -         | -   | 166      |         |
| Utility Vehicles      | 195    | 559        | -   | 333    | 601      | -   | 376    | 1,034     | -   | 162      | 455     |
| Motorcycles/Tricycles | 2,991  | -          | -   | 4,857  | 303      | -   | 6,375  | -         | -   | 3,389    |         |
| Trucks                | -      | 84         | -   | -      | 157      | -   | -      | 164       | -   | -        | 80      |
| Trailers              | -      | 2          | -   | -      | -        | -   | -      | -         | -   | -        | -       |
| Buses                 | -      | 1          | -   | -      | 2        | -   | -      | 4         | -   | -        | 1       |
| Apayao                | 1,126  | 314        | -   | 2,370  | 598      | -   | 1,914  | 562       | -   | 1,327    | 252     |
| Cars                  | 77     | 2          | -   | 136    | 1        | -   | 126    |           | -   | 79       | 1       |
| Utility Vehicles      | 25     | 251        | -   | 60     | 486      | -   | 48     | 461       | -   | 36       | 203     |
| Motorcycles/Tricycles | 1,024  |            | -   | 2,174  | -        | -   | 1,740  |           | -   | 1,212    |         |
| Trucks                | -      | 58         | -   | -      | 108      | -   | -      | 101       | -   | -        | 46      |
| Trailers              | -      | 1          | -   | -      | -        | -   | -      | -         | -   | -        | -       |
| Buses                 | -      | 2          | -   | -      | 3        | -   | -      | -         | -   | -        | 2       |
| Baguio                | 4,161  | 4,607      | 3   | 6,539  | 7,231    | 9   | 6,292  | 7,362     | 12  | 3,589    | 3,482   |
| Cars                  | 1,447  | 313        | 3   | 2,227  | 2        | 6   | 2,226  |           | 2   | 1,058    | 1       |
| Utility Vehicles      | 905    | 3,951      | -   | 1,422  | 6,799    | 3   | 1,483  | 6,948     | 4   | 615      | 3,209   |
| Motorcycles/Tricycles | 1,809  | -          | -   | 2,890  | -        | -   | 2,583  | -         | -   | 1,916    | -       |
| Trucks                | -      | 323        | -   | -      | 413      | -   | -      | 407       | -   | -        | 259     |
| Trailers              | -      | 6          | -   | -      | -        | -   | -      | -         | -   | -        |         |
| Buses                 | -      | 14         | -   | -      | 17       | -   | -      | 7         | 6   | -        | 13      |
| Benguet               | 2,103  | 4,762      | -   | 3,288  | 7,908    | -   | 3,317  | 7,415     | -   | 2,093    | 3,901   |
| Cars                  | 274    | 6          | -   | 333    | 158      | -   | 506    | 6         |     | 235      | 4       |
| Utility Vehicles      | 348    | 4,161      | -   | 551    | 6,865    | -   | 616    | 6,649     |     | 297      | 3,366   |
| Motorcycles/Tricycles | 1,479  |            | -   | 2,404  |          | -   | 2,195  |           |     | 1,561    |         |
| Trucks                | 2      | 581        | -   |        | 867      | -   |        | 736       |     |          | 518     |
| Trailers              | -      | 1          | -   |        |          | -   |        |           |     |          |         |
| Buses                 | -      | 13         | -   |        | 18       | -   |        | 24        |     |          | 13      |
| Ifugao                | 1,344  | 591        | -   | 2,657  | 1,060    | -   | 2,849  | 1,222     | -   | 1,458    | 571     |
| Cars                  | 42     | 14         | -   | 76     | 2        | -   | 96     | 6         | -   | 32       | 2       |
| Utility Vehicles      | 34     | 500        | -   | 80     | 925      | -   | 50     | 1,054     | -   | 25       | 504     |
| Motorcycles/Tricycles | 1,268  | -          | -   | 2,501  | -        | -   | 2,703  |           | -   | 1,401    |         |
| Trucks                | -      | 73         | -   | -      | 129      | -   | -      | 154       | -   | -        | 63      |
| Trailers              | -      | 2          | -   | -      | 2        | -   | -      | -         | -   | -        | -       |
| Buses                 | -      | 2          | -   | -      | 2        | -   | -      | 8         | -   | -        | 2       |

|     |        | Total  |          |
|-----|--------|--------|----------|
| LPG | Gas    | Diesel | LPG      |
| 2   | 88,619 | 65,543 |          |
| 1   | 10,246 | 645    | 26<br>12 |
| 1   | 8,094  | 57,978 | 8        |
|     | 70,277 | 303    | -        |
| -   | 2      | 6,412  | _        |
| _   | -      | 23     | -        |
| -   | _      | 182    | 6        |
| _   | 19,696 | 3,482  | -        |
| _   | 1,018  | 35     | _        |
| _   | 1,066  | 2,649  | _        |
| _   | 17,612 | 303    | _        |
| _   |        | 485    | _        |
| _   | _      | 2      | _        |
| _   | _      | 8      | _        |
| _   | 6,737  | 1,726  | _        |
| _   | 418    | 4      | _        |
| _   | 169    | 1,401  | -        |
| -   | 6,150  | -      | -        |
| -   | -      | 313    | -        |
| -   | -      | 1      | -        |
| -   | -      | 7      | -        |
| 2   | 20,581 | 22,682 | 26       |
| 1   | 6,958  | 316    | 12       |
| 1   | 4,425  | 20,907 | 8        |
| -   | 9,198  | -      | -        |
| -   | -      | 1,402  | -        |
| -   | -      | 6      | -        |
| -   | -      | 51     | 6        |
| -   | 10,801 | 23,986 | -        |
| -   | 1,348  | 174    | -        |
| -   | 1,812  | 21,041 | -        |
| -   | 7,639  | -      | -        |
| -   | 2      | 2,702  | -        |
| -   | -      | 1      | -        |
| -   | -      | 68     | -        |
| -   | 8,308  | 3,444  | -        |
| -   | 246    | 24     |          |
| -   | 189    | 2,983  | -        |
| -   | 7,873  | -      | -        |
| -   | -      | 419    | -        |
| -   | -      | 4      | -        |
| -   | -      | 14     | -        |

**Table 5.3.1** Number of Motor Vehicles Registered by Type, Fuel Used, Year and Province 2018

| District Office       | Fi    | rst Quarte | er  | Sec   | ond Quar | ter | Th    | ird Quart | er  | Fourth ( | Quarter |
|-----------------------|-------|------------|-----|-------|----------|-----|-------|-----------|-----|----------|---------|
|                       | Gas   | Diesel     | LPG | Gas   | Diesel   | LPG | Gas   | Diesel    | LPG | Gas      | Diesel  |
| Kalinga               | 1,199 | 829        | -   | 1,660 | 1,227    | -   | 1,485 | 1,296     | -   | 846      | 578     |
| Cars                  | 19    | 25         | -   |       | 2        | -   | -     | -         | -   | -        | 19      |
| Utility Vehicles      | -     | 699        | -   |       | 1,043    | -   |       | 1,125     | -   | -        | 476     |
| Motorcycles/Tricycles | 1,180 | -          | -   | 1,660 |          | -   | 1,485 |           | -   | 846      |         |
| Trucks                | -     | 104        | -   |       | 177      | -   | -     | 167       | -   | -        | 82      |
| Trailers              | -     | 1          | -   |       | 4        | -   | -     | 4         | -   | -        | -       |
| Buses                 | -     |            | -   |       | 1        | -   | -     | -         | -   | -        | 1       |
| Mt. Province          | 522   | 1,060      | -   | 840   | 1,633    | -   | 992   | 1,685     | -   | 649      | 802     |
| Cars                  | 7     | 31         | -   | 14    | 15       | -   | 19    |           | -   | 12       |         |
| Utility Vehicles      | 34    | 908        | -   | 51    | 1,445    | -   | 60    | 1,502     | -   | 22       | 687     |
| Motorcycles/Tricycles | 481   |            | -   | 775   |          | -   | 913   |           | -   | 615      |         |
| Trucks                | -     | 118        | -   | -     | 152      | -   | -     | 177       | -   | -        | 113     |
| Trailers              | -     | -          | -   | -     | -        | -   | -     | -         | -   | -        | -       |
| Buses                 | -     | 3          | -   | -     | 21       | -   | -     | 6         | -   | -        | 2       |
| NRU                   | 3,223 | 281        | -   | 3,817 | 259      | -   | 3,841 | 270       | -   | 3,422    | 303     |
| Cars                  | 60    | -          | -   | 38    | -        | -   | 53    | -         | -   | 36       | -       |
| Utility Vehicles      | 85    | 281        | -   | 55    | 258      | -   | 67    | 270       | -   | 59       | 303     |
| Motorcycles/Tricycles | 3,078 | -          | -   | 3,724 | -        | -   | 3,721 |           | -   | 3,327    | -       |
| Trucks                | -     | -          | -   | -     | 1        | -   | -     | -         | -   | -        | -       |
| Trailers              | -     | -          | -   | -     | -        | -   | -     | -         | -   | -        | -       |
| Buses                 | -     | _          | -   | -     | _        | -   | -     | _         | -   | -        | -       |

|     |        | Total  |     |
|-----|--------|--------|-----|
| LPG | Gas    | Diesel | LPG |
| -   | 5,190  | 3,930  | -   |
| -   | 19     | 46     | -   |
| -   | -      | 3,343  | -   |
| -   | 5,171  | -      | -   |
| -   | -      | 530    | -   |
| -   | -      | 9      | -   |
| _   | -      | 2      | -   |
| -   | 3,003  | 5,180  | -   |
| -   | 52     | 46     | -   |
| -   | 167    | 4,542  | -   |
| -   | 2,784  | -      | -   |
| -   | -      | 560    | -   |
| -   | -      | -      | -   |
| -   | -      | 32     | -   |
| -   | 14,303 | 1,113  | -   |
| -   | 187    | -      | -   |
| -   | 266    | 1,112  | -   |
| -   | 13,850 | -      | -   |
| -   | -      | 1      | -   |
| -   | -      | -      | -   |
| _   | _      | _      | _   |

**Table 5.3.2** Number of Motor Vehicles Registered by Type of Registration by Province and by Type of Vehicle 2015 to 2018

|                | New    | Abra   | Apayao | Baguio | Benguet | Ifugao | Kalinga | Mt.<br>Province | Total   |
|----------------|--------|--------|--------|--------|---------|--------|---------|-----------------|---------|
| 2015           | 14,173 | 18,234 | 6,347  | 36,585 | 27,672  | 7,511  | 7,158   | 4,395           | 122,075 |
| Private        | 14,119 | 13,359 | 5,127  | 30,401 | 25,720  | 4,940  | 5,143   | 3,681           | 102,490 |
| Car            | 173    | 749    | 237    | 6,565  | 1,313   | 143    | 99      | 50              | 9,329   |
| SUV            | 272    | 370    | 95     | 3,760  | 1,816   | 162    | 100     | 147             | 6,722   |
| UV             | 799    | 2,861  | 935    | 13,070 | 14,813  | 1,673  | 2,310   | 2,123           | 38,584  |
| Truck          | 3      | 434    | 206    | 1,347  | 2,296   | 280    | 293     | 352             | 5,211   |
| Bus            | -      | 3      | -      | 66     | 15      | 9      | 3       | 1               | 97      |
| MC/mtc         | 12,872 | 8,915  | 3,644  | 5,539  | 5,463   | 2,669  | 2,329   | 1,002           | 42,433  |
| Trailer        | -      | 27     | 10     | 54     | 4       | 4      | 9       | 6               | 114     |
| Government     | 54     | 92     | 108    | 607    | 495     | 203    | 166     | 91              | 1,816   |
| Car            | -      | -      | -      | 9      | 12      | 1      | -       | -               | 22      |
| SUV            | 11     | 3      | 1      | 34     | 24      | 19     | 22      | 4               | 118     |
| UV             | 28     | 67     | 54     | 427    | 322     | 95     | 96      | 79              | 1,168   |
| Truck          | -      | 11     | 13     | 56     | 77      | 12     | 5       | 5               | 179     |
| Bus            | -      | 10     | -      | 7      | 3       | 1      | 1       | -               | 22      |
| MC/mtc         | 15     | 1      | 40     | 74     | 57      | 75     | 40      | 3               | 305     |
| Trailer        | -      | -      | -      | -      | -       | -      | 2       | -               | 2       |
| For Hire       | -      | 4,783  | 1,112  | 5,577  | 1,457   | 2,368  | 1,849   | 623             | 17,769  |
| Taxi-Sedan     | -      | -      | -      | 293    | 36      | -      | -       | -               | 329     |
| Taxi-UV        | -      | -      | -      | 1,586  | 204     | -      | -       | -               | 1,790   |
| SUV            | -      | -      | -      | 11     | -       | -      | -       | -               | 11      |
| UV-PUJ         | -      | 264    | 29     | 3,290  | 820     | 165    | 237     | 162             | 4,967   |
| Sch. Serv.     | -      | 4,384  | -      | 220    | 1       | 1      | -       | -               | 4,606   |
| TB-PUB         | -      | -      | 7      | 56     | 63      | 10     | 1       | 16              | 153     |
| TC             | -      | -      | 1,074  | -      | 200     | 2,186  | 1,609   | 433             | 5,502   |
| UV Express/VFH | -      | -      | 2      | -      | 57      | -      | -       | -               | 59      |
| TH             | -      | 125    | -      | 99     | 76      | 6      | 2       | 12              | 320     |
| Trailer        | -      | 10     | -      | 22     | -       | -      | -       | -               | 32      |
| 2016           | 12,312 | 13,004 | 4,523  | 31,624 | 22,834  | 6,509  | 5,256   | 4,549           | 100,611 |
| Private        | 12,237 | 9,140  | 3,641  | 25,706 | 21,280  | 4,288  | 3,796   | 3,895           | 83,983  |
| Car            | 117    | 690    | 225    | 5,435  | 1,062   | 137    | 118     | 43              | 7,827   |
| SUV            | 394    | 368    | 113    | 3,802  | 1,801   | 210    | 137     | 175             | 7,000   |
| UV             | 786    | 2,320  | 858    | 11,187 | 13,388  | 1,627  | 1,746   | 2,490           | 34,402  |
| Truck          | 1      | 322    | 214    | 1,028  | 1,925   | 278    | 291     | 350             | 4,409   |
| Bus            | -      | 2      | 1      | 12     | 14      | -      | 96      | -               | 125     |
| MC/mtc         | 10,939 | 5,426  | 2,218  | 4,204  | 3,087   | 1,932  | 1,400   | 829             | 30,035  |
| Trailer        | -      | 12     | 12     | 38     | 3       | 104    | 8       | 8               | 185     |
| Government     | 75     | 44     | 75     | 437    | 401     | 146    | 119     | 82              | 1,379   |
| Car            | -      | -      | 1      | 12     | 8       | -      | -       | 1               | 22      |
| SUV            | -      | 3      | 2      | 38     | 21      | 8      | 10      | 5               | 87      |
| UV             | 20     | 33     | 44     | 329    | 279     | 85     | 69      | 67              | 926     |
| Truck          | 1      | 3      | 6      | 21     | 56      | 7      | 2       | 6               | 102     |
| Bus            | -      | 1      | 22     | 8      | 3       | -      | 2       | -               | 36      |

**Table 5.3.2** Number of Motor Vehicles Registered by Type of Registration by Province and by Type of Vehicle 2015 to 2018

|                | New    | Abra   | Apayao | Baguio | Benguet | Ifugao | Kalinga | Mt.<br>Province | Total   |
|----------------|--------|--------|--------|--------|---------|--------|---------|-----------------|---------|
| MC/mtc         | 54     | 3      | -      | 29     | 34      | 46     | 36      | 3               | 205     |
| Trailer        | -      | 1      |        | -      | -       | -      | -       | -               | 1       |
| For Hire       | -      | 3,820  | 807    | 5,481  | 1,153   | 2,075  | 1,341   | 572             | 15,249  |
| Taxi-Sedan     | -      | -      | -      | 7      | 3       | -      | -       | -               | 10      |
| Taxi-UV        | -      | -      | -      | 2,469  | 209     | -      | -       | -               | 2,678   |
| SUV            | -      | -      | -      | -      | -       | -      | -       | -               | -       |
| UV-PUJ         | -      | 186    | 26     | 2,610  | 618     | 90     | 168     | 106             | 3,804   |
| Sch. Serv.     | -      | -      | -      | 30     | -       | -      | -       | -               | 30      |
| TB-PUB         | -      | 6      | 6      | 60     | 49      | 10     | 2       | 27              | 160     |
| TC             | -      | 3,619  | 770    | -      | 173     | 1,973  | 1,169   | 435             | 8,139   |
| UV Express/VFH | -      | -      | -      | 183    | 29      | -      | -       | -               | 212     |
| TH             | -      | 8      | 5      | 122    | 68      | 2      | 2       | 4               | 211     |
| Trailer        | -      | 1      | -      | -      | 4       | -      | -       | -               | 5       |
| 2017           | 7,479  | 19,037 | 6,944  | 43,228 | 33,242  | 9,474  | 8,338   | 6,595           | 134,337 |
| Private        | 7,444  | 13,870 | 5,689  | 35,321 | 31,054  | 6,468  | 6,246   | 5,707           | 111,799 |
| Car            | 91     | 932    | 348    | 7,331  | 1,492   | 198    | 183     | 52              | 10,627  |
| SUV            | 301    | 497    | 166    | 5,277  | 2,536   | 278    | 219     | 250             | 9,524   |
| UV             | 598    | 3,228  | 1,222  | 14,733 | 19,133  | 2,320  | 2,740   | 3,602           | 47,576  |
| Truck          | 1      | 443    | 299    | 1,418  | 2,749   | 398    | 439     | 469             | 6,216   |
| Bus            | -      | 3      | 1      | 18     | 20      | -      | 5       | -               | 47      |
| MC/mtc         | 6,453  | 8,744  | 3,639  | 6,470  | 5,116   | 3,138  | 2,649   | 1,334           | 37,543  |
| Trailer        | -      | 23     | 14     | 74     | 8       | 136    | 11      | -               | 266     |
| Government     | 35     | 83     | 109    | 669    | 560     | 201    | 171     | 115             | 1,943   |
| Car            | -      | 1      | 2      | 16     | 10      | -      | 2       | -               | 31      |
| SUV            | -      | 5      | 4      | 46     | 32      | 10     | 13      | 6               | 116     |
| UV             | 13     | 56     | 60     | 481    | 380     | 109    | 103     | 95              | 1,297   |
| Truck          | -      | 7      | 11     | 54     | 80      | 12     | 6       | 7               | 177     |
| Bus            | -      | 1      | -      | 8      | 3       | -      | 1       | -               | 13      |
| MC/mtc         | 22     | 12     | 32     | 64     | 55      | 70     | 46      | 7               | 308     |
| Trailer        | -      | 1      | -      | -      | -       | -      | -       | -               | 1       |
| For Hire       | -      | 5,084  | 1,146  | 7,238  | 1,628   | 2,805  | 1,921   | 773             | 20,595  |
| Taxi-Sedan     | -      | -      | -      | 28     | 4       | -      | -       | -               | 32      |
| Taxi-UV        | -      | -      | -      | 3,160  | 280     | -      | -       | -               | 3,440   |
| SUV            | -      | -      | -      | -      | -       | -      | -       | -               | -       |
| UV-PUJ         | -      | 256    | 38     | 3,588  | 904     | 121    | 241     | 157             | 5,305   |
| Sch. Serv.     | -      | -      | -      | 37     | -       | -      | -       | -               | 37      |
| TB-PUB         | -      | 8      | 10     | 84     | 61      | 16     | 4       | 28              | 211     |
| TC             | -      | 4,802  | 1,092  | -      | 245     | 2,666  | 1,672   | 582             | 11,059  |
| UV Express/VFH | -      | -      | -      | 192    | 37      | -      | -       | -               | 229     |
| TH             | -      | 17     | 6      | 149    | 97      | 2      | 2       | 6               | 279     |
| Trailer        | -      | 1      | -      | -      | -       | -      | 2       | -               | 3       |
| 2018           | 16,950 | 25,732 | 9,131  | 47,365 | 38,427  | 12,731 | 10,023  | 8,876           | 169,235 |
| Private        | 16,816 | 20,484 | 7,803  | 40,134 | 36,300  | 9,444  | 8,529   | 8,061           | 147,571 |

**Table 5.3.2** Number of Motor Vehicles Registered by Type of Registration by Province and by Type of Vehicle 2015 to 2018

|                | New    | Abra   | Apayao | Baguio | Benguet | Ifugao | Kalinga | Mt.<br>Province | Total  |
|----------------|--------|--------|--------|--------|---------|--------|---------|-----------------|--------|
| Car            | 213    | 1,101  | 455    | 7,607  | 1,633   | 283    | 207     | 66              | 11,565 |
| SUV            | 449    | 615    | 223    | 5,924  | 3,109   | 344    | 450     | 350             | 11,464 |
| UV             | 1,030  | 3,516  | 1,386  | 15,245 | 20,590  | 2,870  | 2,745   | 4,613           | 51,995 |
| Truck          | 1      | 486    | 326    | 1,346  | 2,860   | 431    | 563     | 603             | 6,616  |
| Bus            | -      | 3      | -      | 11     | 13      | -      | -       | 1               | 28     |
| MC/mtc         | 15,123 | 14,734 | 5,397  | 9,919  | 8,083   | 5,512  | 4,553   | 2,428           | 65,749 |
| Trailer        | -      | 29     | 16     | 82     | 12      | 4      | 11      | -               | 154    |
| Government     | 134    | 86     | 122    | 733    | 538     | 246    | 210     | 126             | 2,195  |
| Car            | -      | -      | 2      | 15     | 9       | -      | 1       | 0               | 27     |
| SUV            | 6      | 8      | 4      | 47     | 35      | 18     | 23      | 7               | 148    |
| UV             | 32     | 56     | 53     | 515    | 354     | 106    | 114     | 106             | 1,336  |
| Truck          | -      | 7      | 10     | 52     | 71      | 10     | 10      | 3               | 163    |
| Bus            | -      | 1      | -      | 7      | 1       | -      | -       | 0               | 9      |
| MC/mtc         | 96     | 13     | 53     | 97     | 68      | 112    | 62      | 10              | 511    |
| Trailer        | -      | 1      | -      | -      | -       | -      | -       | -               | 1      |
| For Hire       | -      | 5,162  | 1,206  | 6,498  | 1,589   | 3,041  | 1,284   | 689             | 19,469 |
| Taxi-Sedan     | -      | -      | -      | -      | 4       | -      | -       | -               | 4      |
| Taxi-UV        | -      | -      | -      | 2,661  | 262     | -      | 23      | -               | 2,946  |
| SUV            | -      | -      | -      | -      | -       | -      | -       | -               | -      |
| UV-PUJ         | -      | 257    | 44     | 3,411  | 864     | 109    | 231     | 133             | 5,049  |
| Sch. Serv.     | -      | -      | -      | 41     | -       | -      | -       | -               | 41     |
| TB-PUB         | -      | 5      | 7      | 74     | 56      | 16     | 1       | 29              | 188    |
| TC             | -      | 4,887  | 1,037  | -      | 289     | 2,916  | 1,029   | 522             | 10,680 |
| UV Express/VFH | -      | -      | -      | 172    | 40      | -      | -       | -               | 212    |
| TH             | -      | 13     | 118    | 139    | 74      | -      | -       | 5               | 349    |
| Trailer        | -      | -      | -      | -      | -       | -      | -       | -               | -      |

Table 5.4 Notifiable Diseases: Reported Cases and Deaths, CAR 2008 to 2018

|      | Diarrheas |       |        |        |        |       | orrhagic Fev<br>e (Dengue) |        | Pneumonia |       |        |      |
|------|-----------|-------|--------|--------|--------|-------|----------------------------|--------|-----------|-------|--------|------|
| Year | Cases     | Cases |        | Deaths |        | Cases |                            | Deaths |           | s     | Deaths |      |
|      | Number    | Rate  | Number | Rate   | Number | Rate  | Number                     | Rate   | Number    | Rate  | Number | Rate |
| 2008 | 12,922    | 795   | -      | -      | 320    | 20    | -                          | -      | 29,657    | 1,824 | -      | -    |
| 2009 | 5,529     | 333   | 1      | 0      | 351    | 21    | 3                          | 0      | 16,777    | 1,011 | 502    | 30   |
| 2010 | 13,353    | 788   | 3      | 0      | 2,026  | 120   | 3                          | 0      | 33,305    | 1,966 | 682    | 40   |
| 2011 | 15,136    | 910   | 1,768  | 106    | 2,767  | 166   | 35                         | 2      | 23,869    | 1,435 | 2,487  | 150  |
| 2012 | 9,430     | 559   | -      | -      | 1,086  | 64    | 3                          | 0      | 24,332    | 1,442 | 904    | 54   |
| 2013 | 10,858    | 635   | 3      | 0      | 198    | 12    | 6                          | 0      | 24,148    | 1,411 | 229    | 13   |
| 2014 | 19,782    | 1,141 | 13     | 1      | -      | -     | 1                          | 0      | 22,861    | 1,319 | 805    | 46   |
| 2015 | 24,412    | 1,408 | 23     | 1      | 1,948  | 112   | 2                          | 0      | 18,148    | 1,047 | 1,046  | 60   |
| 2016 | 9,504     | 530   | 16     | 1      | 1,948  | 109   | 2                          | 0      | 10,715    | 598   | 626    | 35   |
| 2017 | 10,694    | 579   | -      | -      | 61     | 3     | -                          | -      | 20,460    | 1,108 | 938    | 51   |
| 2018 | 9,357     | 525   | 38     | 2      | -      | -     | 15                         | 1      | 25,108    | 1,407 | 826    | 46   |

Table 5.4 Notifiable Diseases: Reported Cases and Deaths, CAR 2008 to 2018 (Continued)

|      |              | Leptos | pirosis |      |        | Mal  | aria   |      | Schistosomiasis |      |        |      |
|------|--------------|--------|---------|------|--------|------|--------|------|-----------------|------|--------|------|
| Year | Cases Deaths |        | Case    | es   | Death  | าร   | Cases  |      | Deat            | hs   |        |      |
|      | Number       | Rate   | Number  | Rate | Number | Rate | Number | Rate | Number          | Rate | Number | Rate |
| 2008 | 1            | 0      | -       | -    | 150    | 9    | -      | -    | -               | -    | -      | -    |
| 2009 | -            | -      | -       | -    | 74     | 4    | -      | -    | -               | -    | -      | -    |
| 2010 | -            | -      | -       | -    | 21     | 1    | -      | -    | -               | -    | -      | -    |
| 2011 | 2            | 0      | 1       | 0    | -      | -    | 11     | 1    | -               | -    | -      | -    |
| 2012 | -            | -      | -       | -    | -      | -    | -      | -    | -               | -    | -      | -    |
| 2013 | 1            | 0      | -       | -    | -      | -    | -      | -    | -               | -    | -      | -    |
| 2014 | -            | -      | -       | -    | 2      | 0    | -      | -    | -               | -    | -      | -    |
| 2015 | 2            | 0      | 1       | 0    | -      | -    | -      | -    | -               | -    | -      | -    |
| 2016 | 2            | 0      | -       | -    | -      | -    | -      | -    | -               | -    | -      | -    |
| 2017 | -            | -      | -       | -    | -      | -    | -      | -    | -               | -    | -      | -    |
| 2018 | 3            | 0      | 1       | 0    | -      | -    | -      | -    | -               | -    | -      | -    |

|        | Filari | asis   |      | Leprosy |      |        |      |  |  |  |
|--------|--------|--------|------|---------|------|--------|------|--|--|--|
| Case   | Cases  |        | าร   | Case    | s    | Deaths |      |  |  |  |
| Number | Rate   | Number | Rate | Number  | Rate | Number | Rate |  |  |  |
| -      | -      | -      | -    | 5       | 0    | -      | -    |  |  |  |
| -      | -      | -      | -    | 1       | 0    | -      | -    |  |  |  |
| -      | -      | -      | -    | 1       | 0    | -      | -    |  |  |  |
| -      | -      | -      | -    | -       | -    | -      | -    |  |  |  |
| -      | -      | -      | -    | -       | -    | 1      | 0    |  |  |  |
| -      | -      | -      | -    | -       | -    | -      | -    |  |  |  |
| -      | -      | -      | -    | 2       | 0    | -      | -    |  |  |  |
| -      | -      | -      | -    | 1       | 0    | -      | -    |  |  |  |
| -      | -      | -      | -    | 1       | 0    | -      | -    |  |  |  |
| -      | -      | -      | -    | -       | -    | -      | -    |  |  |  |
| -      | -      | -      | -    | 15      | 1    | -      | -    |  |  |  |

| Typho  | id and | parathypho | oid  | Acute Viral Hepatitis |      |        |      |  |  |
|--------|--------|------------|------|-----------------------|------|--------|------|--|--|
| Case   | S      | Death      | ıs   | Case                  | !S   | Deaths |      |  |  |
| Number | Rate   | Number     | Rate | Number                | Rate | Number | Rate |  |  |
| 1,288  | 79     | -          | -    | 45                    | 3    | -      | -    |  |  |
| 275    | 17     | 2          | 0    | 32                    | 2    | -      | -    |  |  |
| 336    | 20     | 2          | 0    | 2                     | 0    | 1      | 0    |  |  |
| 386    | 23     | 3          | 0    | 5                     | 0    | 1      | 0    |  |  |
| 818    | 48     | -          | -    | 8                     | 0    | -      | -    |  |  |
| 403    | 24     | 1          | 0    | -                     | -    | -      | -    |  |  |
| 107    | 6      | 4          | 0    | 3                     | 0    | -      | -    |  |  |
| 240    | 14     | 5          | 0    | 75                    | 4    | 1      | 0    |  |  |
| 240    | 13     | -          | -    | 86                    | 5    | -      | -    |  |  |
| 182    | 10     | -          | -    | 5                     | 0    | -      | -    |  |  |
| 130    | 7      | -          | -    | 1                     | 0    | 9      | 1    |  |  |

Table 5.5 Notifiable Water-Related Diseases and Conditions, CAR 2008 to 2018

| Year | Area         | Diarri   | heas    | Acute R<br>Pneuor |         | Acu<br>Hemorr<br>Fever Syn<br>(Deng | hagic<br>Idrome | Mala   | ria  | Typhoid and<br>Paratyphoid Fever |       |
|------|--------------|----------|---------|-------------------|---------|-------------------------------------|-----------------|--------|------|----------------------------------|-------|
|      |              | Number   | Rate    | Number            | Rate    | Number                              | Rate            | Number | Rate | Number                           | Rate  |
|      | CAR          | 12,922.0 | 794.9   | 29,657.0          | 1,824.4 | 320.0                               | 19.7            | 150.0  | 9.2  | 1,288.0                          | 79.2  |
|      | Abra         | 2,684.0  | 1,129.6 | 3,456.0           | 1,454.5 | 3.0                                 | 1.3             | -      | -    | 389.0                            | 163.7 |
|      | Apayao       | 399.0    | 339.3   | 1,411.0           | 1,199.8 | -                                   | -               | 21.0   | 17.9 | -                                | -     |
| 2008 | Benguet      | 4,447.0  | 1,117.2 | 5,957.0           | 1,496.6 | -                                   | -               | -      | -    | 311.0                            | 78.1  |
| 2000 | Baguio City  | 949.0    | 314.5   | 3,064.0           | 1,015.4 | 78.0                                | 25.8            | -      | -    | 127.0                            | 42.1  |
|      | Ifugao       | 247.0    | 127.6   | 11,186.0          | 5,780.9 | 184.0                               | 95.1            | -      | -    | 223.0                            | 115.2 |
|      | Kalinga      | 1,769.0  | 842.4   | 2,010.0           | 957.1   | 2.0                                 | 1.0             | 116.0  | 55.2 | 1.0                              | 0.5   |
|      | Mt. Province | 2,427.0  | 1,452.4 | 2,573.0           | 1,539.8 | 53.0                                | 31.7            | 13.0   | 7.8  | 237.0                            | 141.8 |
|      | CAR          | 5,529.0  | 333.1   | 16,777.0          | 1,010.8 | 351.0                               | 21.1            | 74.0   | 4.5  | 275.0                            | 16.6  |
|      | Abra         | 1,082.0  | 449.5   | 7,447.0           | 3,093.9 | -                                   | -               | -      | -    | 88.0                             | 36.6  |
|      | Apayao       | 416.0    | 344.9   | 289.0             | 239.6   | 247.0                               | 204.8           | 1.0    | 0.8  | 4.0                              | 3.3   |
| 2009 | Benguet      | 935.0    | 229.9   | 3,569.0           | 877.6   | 2.0                                 | 0.5             | -      | -    | 131.0                            | 32.2  |
| 2009 | Baguio City  | 2,310.0  | 749.2   | 3,280.0           | 1,063.9 | 100.0                               | 32.4            | -      | -    | -                                | -     |
|      | lfugao       | 1.0      | 0.5     | 47.0              | 23.8    | 1.0                                 | 0.5             | -      | -    | -                                | -     |
|      | Kalinga      | -        | -       | -                 | -       | -                                   | -               | -      | -    | -                                | -     |
|      | Mt. Province | 785.0    | 459.1   | 2,145.0           | 1,254.4 | 1.0                                 | 0.6             | 73.0   | 42.7 | 52.0                             | 30.4  |
|      | CAR          | 13,353.0 | 788.1   | 33,305.0          | 1,965.6 | 2,026.0                             | 119.6           | 21.0   | 1.2  | 336.0                            | 19.8  |
|      | Abra         | 1,389.0  | 568.8   | 1,768.0           | 724.0   | 4.0                                 | 1.6             | -      | -    | 101.0                            | 41.4  |
|      | Apayao       | 241.0    | 195.0   | 614.0             | 496.8   | 52.0                                | 42.1            | 10.0   | 8.1  | -                                | -     |
| 2010 | Benguet      | 2,878.0  | 692.5   | 13,850.0          | 3,332.4 | 282.0                               | 67.9            | -      | -    | 142.0                            | 34.2  |
| 2010 | Baguio City  | 1,624.0  | 515.4   | 3,259.0           | 1,034.3 | 134.0                               | 42.5            | -      | -    | 56.0                             | 17.8  |
|      | lfugao       | 2,909.0  | 1,443.7 | 11,815.0          | 5,863.5 | 1,460.0                             | 724.6           | -      | -    | -                                | -     |
|      | Kalinga      | 2,547.0  | 1,159.3 | 12.0              | 5.5     | 62.0                                | 28.2            | -      | -    | 3.0                              | 1.4   |
|      | Mt. Province | 1,765.0  | 1,010.3 | 1,987.0           | 1,137.4 | 32.0                                | 18.3            | 11.0   | 6.3  | 34.0                             | 19.5  |
|      | CAR          | 15,136.0 | 910.2   | 23,869.0          | 1,435.4 | 2,767.0                             | 166.4           | -      | -    | 386.0                            | 23.2  |
|      | Abra         | 2,384.0  | 998.7   | 1,504.0           | 630.1   | 1.0                                 | 0.4             | -      | -    | 131.0                            | 54.9  |
|      | Apayao       | 910.0    | 717.7   | 2,230.0           | 1,758.7 | 19.0                                | 15.0            | -      | -    | -                                | -     |
| 2011 | Benguet      | 498.0    | 126.5   | 1,772.0           | 450.1   | 76.0                                | 19.3            | -      | -    | -                                | -     |
| 2011 | Baguio City  | 2,488.0  | 750.1   | 3,487.0           | 1,051.3 | 489.0                               | 147.4           | -      | -    | 255.0                            | 76.9  |
|      | Ifugao       | 3,605.0  | 1,875.7 | 8,468.0           | 4,405.8 | -                                   | -               | -      | -    | -                                | -     |
|      | Kalinga      | 2,338.0  | 1,039.1 | 2,497.0           | 1,109.8 | 1,985.0                             | 882.2           | -      | -    | -                                | -     |
|      | Mt. Province | 2,913.0  | 1,881.8 | 3,911.0           | 2,526.5 | 197.0                               | 127.3           | -      | -    | -                                | -     |
|      | CAR          | 9,430.0  | 558.9   | 24,332.0          | 1,442.2 | 1,086.0                             | 64.4            | -      | -    | 818.0                            | 48.5  |
|      | Abra         | 258.0    | 107.1   | 1,873.0           | 777.5   | 6.0                                 | 2.5             | -      | -    | 153.0                            | 63.5  |
|      | Apayao       | 463.0    | 357.0   | 1,143.0           | 881.3   | 105.0                               | 81.0            | -      | -    | -                                | -     |
| 2012 | Benguet      | -        | -       | 12,544.0          | 3,152.6 | 168.0                               | 42.2            | -      | -    | 647.0                            | 162.6 |
| 2012 | Baguio City  | 3,350.0  | 989.4   | 2,823.0           | 833.7   | -                                   | -               | -      | -    | -                                | -     |
|      | Ifugao       | 569.0    | 292.4   | 2,913.0           | 1,496.9 | 238.0                               | 122.3           | -      | -    | 16.0                             | 8.2   |
|      | Kalinga      | 2,530.0  | 1,101.9 | 1,488.0           | 648.1   | 569.0                               | 247.8           | -      | -    | 2.0                              | 0.9   |
|      | Mt. Province | 2,260.0  | 1,449.6 | 1,548.0           | 992.9   | -                                   | -               | -      | -    | -                                | -     |
|      |              |          |         |                   |         |                                     |                 |        |      |                                  |       |

| Viral Hep | oatitis | Lepro  | osy  | Schistoso- | -miasis | Filaria | ısis | Leptosp | oirosis |
|-----------|---------|--------|------|------------|---------|---------|------|---------|---------|
| Number    | Rate    | Number | Rate | Number     | Rate    | Number  | Rate | Number  | Rate    |
| 45.0      | 2.8     | 5.0    | 0.3  | -          | -       | -       | -    | 1.0     | 0.1     |
| 3.0       | 1.3     | 4.0    | 1.7  | -          | -       | -       | -    | -       | -       |
| -         | -       | 1.0    | 0.9  | -          | -       | -       | -    | -       | -       |
| 33.0      | 8.3     | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| 7.0       | 3.6     | -      | -    | -          | -       | -       | -    | -       | -       |
| 1.0       | 0.5     | -      | -    | -          | -       | -       | -    | -       | -       |
| 1.0       | 0.6     | -      | -    | -          | -       | -       | -    | 1.0     | 0.6     |
| 32.0      | 1.9     | 1.0    | 0.1  | -          | -       | -       | -    | -       | -       |
| 7.0       | 2.9     | -      | -    | -          | -       | -       | -    | -       | -       |
| 9.0       | 7.5     | -      | -    | -          | -       | -       | -    | -       | -       |
| 13.0      | 3.2     | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| 3.0       | 1.8     | 1.0    | 0.6  | -          | -       | -       | -    | -       | -       |
| 2.0       | 0.1     | 1.0    | 0.1  | -          | -       | -       | -    | -       | -       |
| 1.0       | 0.4     | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | 1.0    | 0.5  | -          | -       | -       | -    | -       | -       |
| 1.0       | 0.6     | -      | -    | -          | -       | -       | -    | -       | - 0.1   |
| 5.0       | 0.3     | -      | -    | -          | -       | -       | -    | 2.0     | 0.1     |
| -         | -       | -      | -    | -          | -       | -       | -    | 1.0     | -       |
| 5.0       | 3.9     | -      | -    | -          | -       | -       | -    | 1.0     | 0.8     |
| -         | -       | -      | -    | -          | -       | -       | -    | - 1.0   | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | 1.0     | 0.3     |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| 8.0       | 0.5     | -      | -    | -          | -       | -       | -    | -       | -       |
| 2.0       | 0.5     | -      | -    | -          | -       | -       | -    | -       | -       |
|           |         | -      | -    | -          | -       | _       | -    | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       |         |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |
| 6.0       | 3.1     | -      | -    | -          |         | -       | -    | -       | -       |
| -         |         | -      | -    | -          | -       | -       | -    | -       | -       |
|           |         |        | -    | -          | -       |         |      | -       | -       |
| -         | -       | -      | -    | -          | -       | -       | -    | -       | -       |

Table 5.5 Notifiable Water-Related Diseases and Conditions, CAR 2008 to 2018

| Year | Area         | Diarri   | neas    | Acute R<br>Pneuor |         | Acu<br>Hemorr<br>Fever Syn<br>(Deng | hagic<br>Idrome | Malaı  | ria  | Typhoid<br>Paratypho |       |
|------|--------------|----------|---------|-------------------|---------|-------------------------------------|-----------------|--------|------|----------------------|-------|
|      |              | Number   | Rate    | Number            | Rate    | Number                              | Rate            | Number | Rate | Number               | Rate  |
|      | CAR          | 10,858.0 | 634.6   | 24,148.0          | 1,411.4 | 198.0                               | 11.6            | -      | -    | 403.0                | 23.6  |
|      | Abra         | 1,961.0  | 807.3   | 4,531.0           | 1,865.4 | -                                   | -               | -      | -    | 223.0                | 91.8  |
| 2013 | Apayao       | 2,575.0  | 1,941.9 | 1,071.0           | 807.7   | 143.0                               | 107.8           | -      | -    | 34.0                 | 25.6  |
|      | Benguet      | 1,917.0  | 476.9   | 6,132.0           | 1,525.4 | 53.0                                | 13.2            | -      | -    | 43.0                 | 10.7  |
|      | Baguio City  | 246.0    | 71.2    | 1,323.0           | 383.0   | 2.0                                 | 0.6             | -      | -    | 2.0                  | 0.6   |
|      | Ifugao       | 1,670.0  | 848.2   | 5,135.0           | 2,607.9 | -                                   | -               | -      | -    | 35.0                 | 17.8  |
|      | Kalinga      | 1,638.0  | 699.4   | 3,890.0           | 1,661.0 | -                                   | -               | -      | -    | 10.0                 | 4.3   |
|      | Mt. Province | 851.0    | 542.4   | 2,066.0           | 1,316.8 | -                                   | -               | -      | -    | 56.0                 | 35.7  |
|      | CAR          | 19,782.0 | 1,141.2 | 22,861.0          | 1,318.8 | -                                   | -               | 2.0    | 0.1  | 107.0                | 6.2   |
|      | Abra         | 2,514.0  | 1,023.0 | 3,480.0           | 1,416.1 | -                                   | -               | -      | -    | 5.0                  | 2.0   |
|      | Apayao       | 2,790.0  | 2,332.0 | 907.0             | 758.1   | -                                   | -               | -      | -    | 12.0                 | 10.0  |
| 2014 | Benguet      | 5,342.0  | 1,217.6 | 8,460.0           | 1,928.3 | -                                   | -               | -      | -    | -                    | -     |
| 2014 | Baguio City  | 2,190.0  | 624.5   | 4,042.0           | 1,152.6 | -                                   | -               | -      | -    | 46.0                 | 13.1  |
|      | Ifugao       | 4,226.0  | 2,065.5 | 1,715.0           | 838.2   | -                                   | -               | 2.0    | 1.0  | 1.0                  | 0.5   |
|      | Kalinga      | 2,147.0  | 1,003.0 | 2,955.0           | 1,380.4 | -                                   | -               | -      | -    | -                    | -     |
|      | Mt. Province | 573.0    | 358.2   | 1,302.0           | 813.9   | -                                   | -               | -      | -    | 43.0                 | 26.9  |
|      | CAR          | 24,412.0 | 1,408.3 | 18,148.0          | 1,046.9 | 1,948.0                             | 112.4           | -      | -    | 240.0                | 13.8  |
|      | Abra         | 2,496.0  | 1,015.7 | 3,323.0           | 1,352.2 | -                                   | -               | -      | -    | 1.0                  | 0.4   |
|      | Apayao       | 3,376.0  | 2,821.8 | 105.0             | 87.8    | 76.0                                | 63.5            | -      | -    | 22.0                 | 18.4  |
| 2015 | Benguet      | 2,906.0  | 662.4   | 5,463.0           | 1,245.2 | 895.0                               | 204.0           | -      | -    | -                    | -     |
| 2015 | Baguio City  | 7,460.0  | 2,127.3 | 4,187.0           | 1,194.0 | 6.0                                 | 1.7             | -      | -    | -                    | -     |
|      | Ifugao       | 5,090.0  | 2,487.8 | 3,255.0           | 1,590.9 | 888.0                               | 434.0           | -      | -    | 206.0                | 100.7 |
|      | Kalinga      | 1,587.0  | 741.4   | 1,541.0           | 719.9   | 76.0                                | 35.5            | -      | -    | 2.0                  | 0.9   |
|      | Mt. Province | 1,497.0  | 935.7   | 274.0             | 171.3   | 7.0                                 | 4.4             | -      | -    | 9.0                  | 5.6   |
|      | CAR          | 9,504.0  | 530.3   | 10,715.0          | 597.9   | 1,948.0                             | 108.7           | -      | -    | 240.0                | 13.4  |
|      | Abra         | 265.0    | 105.5   | 1,721.0           | 685.3   | -                                   | -               | -      | -    | 1.0                  | 0.4   |
|      | Apayao       | 3,344.0  | 2,715.9 | 102.0             | 82.8    | 76.0                                | 61.7            | -      | -    | 22.0                 | 17.9  |
| 2016 | Benguet      | -        | -       | 3,725.0           | 816.3   | 895.0                               | 196.1           | -      | -    | -                    | -     |
| 2016 | Baguio City  | 3,756.0  | 1,023.3 | 136.0             | 37.1    | 6.0                                 | 1.6             | -      | -    | -                    | -     |
|      | Ifugao       | -        | -       | 3,199.0           | 1,513.4 | 888.0                               | 420.1           | -      | -    | 206.0                | 97.5  |
|      | Kalinga      | 1,587.0  | 720.5   | 1,558.0           | 707.4   | 76.0                                | 34.5            | -      | -    | 2.0                  | 0.9   |
|      | Mt. Province | 552.0    | 339.1   | 274.0             | 168.3   | 7.0                                 | 4.3             | -      | -    | 9.0                  | 5.5   |
|      | CAR          | 10,694.0 | 578.9   | 20,460.0          | 1,107.5 | 61.0                                | 3.3             | -      | -    | 182.0                | 9.9   |
|      | Abra         | 834.0    | 325.7   | 2,970.0           | 1,160.0 | 58.0                                | 22.7            | -      | -    | 5.0                  | 2.0   |
|      | Apayao       | 618.0    | 471.2   | 1,098.0           | 837.2   | -                                   | -               | -      | -    | 30.0                 | 22.9  |
| 2017 | Benguet      | 2,154.0  | 463.6   | 1,635.0           | 351.9   | -                                   | -               | -      | -    | -                    | -     |
| 2017 | Baguio City  | 841.0    | 233.9   | 4,702.0           | 1,307.5 | -                                   | -               | -      | -    | 11.0                 | 3.1   |
|      | Ifugao       | 1,839.0  | 823.4   | 3,668.0           | 1,642.3 | 3.0                                 | 1.3             | -      | -    | 82.0                 | 36.7  |
|      | Kalinga      | 1,853.0  | 793.3   | 5,134.0           | 2,197.8 | -                                   | -               | -      | -    | -                    | -     |
|      | Mt. Province | 2,555.0  | 1,427.6 | 1,253.0           | 700.1   | -                                   | -               | -      | -    | 54.0                 | 30.2  |
|      |              |          |         |                   |         |                                     |                 |        |      |                      |       |

| Viral Hep | oatitis | Lepro  | osy   | Schistoso- | -miasis | Filaria | sis  | Leptosp | irosis |
|-----------|---------|--------|-------|------------|---------|---------|------|---------|--------|
| Number    | Rate    | Number | Rate  | Number     | Rate    | Number  | Rate | Number  | Rate   |
| -         | -       | -      | -     | -          | -       | -       | -    | 1.0     | 0.1    |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | 1.0     | 0.8    |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| 3.0       | 0.2     | 2.0    | 0.1   | -          | -       | -       | -    | -       | -      |
| -         | -       | 1.0    | 0.4   | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| 3.0       | 1.5     | 1.0    | 0.5   | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| 75.0      | - 4.2   | -      | - 0.1 | -          | -       | -       | -    | -       | - 0.1  |
| 75.0      | 4.3     | 1.0    | 0.1   | -          | -       | -       | -    | 2.0     | 0.1    |
| 1.0       | 0.4     | -      | -     | -          | -       | -       | -    | -       | 1.7    |
| -         | -       | -      | -     | -          | -       | -       | -    | 2.0     |        |
| 5.0       | 1.4     | -      | -     | -          | -       | -       | -    | -       | -      |
| 17.0      | 8.3     | -      | -     | -          |         |         |      |         | _      |
| 51.0      | 23.8    | 1.0    | 0.5   | _          | _       | -       | _    | _       | -      |
| 1.0       | 0.6     | -      | -     | _          | _       | _       | _    | _       | _      |
| 86.0      | 4.8     | 1.0    | 0.1   | _          | _       | _       | _    | 2.0     | 0.1    |
| 1.0       | 0.4     | -      | -     | _          | _       | _       | _    | -       | -      |
| -         | -       | _      | _     | _          | _       | _       | _    | 2.0     | 1.6    |
| _         | _       | _      | _     | _          | _       | _       | _    |         | -      |
| -         | -       | -      | _     | -          | -       | -       | -    | -       | -      |
| 17.0      | 8.0     | -      | -     | -          | -       | -       | -    | -       | -      |
| 17.0      | 7.7     | 1.0    | 0.5   | -          | -       | -       | -    | -       | -      |
| 51.0      | 31.3    | -      | -     | -          | -       | -       | -    | -       | -      |
| 5.0       | 0.3     | -      | -     | -          | -       | -       | -    | -       | -      |
| 1.0       | 0.4     | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| 3.0       | 1.3     | -      | -     | -          | -       | -       | -    | -       | -      |
| -         | -       | -      | -     | -          | -       | -       | -    | -       | -      |
| 1.0       | 0.6     | -      | -     | -          | -       | -       | -    | -       | -      |

Table 5.5 Notifiable Water-Related Diseases and Conditions, CAR 2008 to 2018

| Year | Area         | Diarrh  | neas    | Acute R<br>Pneuor |         | Acut<br>Hemorr<br>Fever Syn<br>(Deng | hagic<br>drome | Mala   | ria  | Typhoid<br>Paratypho |      |
|------|--------------|---------|---------|-------------------|---------|--------------------------------------|----------------|--------|------|----------------------|------|
|      |              | Number  | Rate    | Number            | Rate    | Number                               | Rate           | Number | Rate | Number               | Rate |
|      | CAR          | 9,357.0 | 524.5   | 25,108.0          | 1,407.5 | -                                    | -              | -      | -    | 130.0                | 7.3  |
|      | Abra         | 752.0   | 307.2   | 3,831.0           | 1,565.0 | -                                    | -              | -      | -    | 1.0                  | 0.4  |
|      | Apayao       | 1,401.0 | 1,139.2 | 2,941.0           | 2,391.5 | -                                    | -              | -      | -    | 46.0                 | 37.4 |
| 2018 | Benguet      | 1,539.0 | 327.9   | 1,641.0           | 349.6   | -                                    | -              | -      | -    | 20.0                 | 4.3  |
| 2016 | Baguio City  | 910.0   | 250.5   | 4,271.0           | 1,175.7 | -                                    | -              | -      | -    | -                    | -    |
|      | Ifugao       | 1,853.0 | 884.0   | 9,779.0           | 4,665.3 | -                                    | -              | -      | -    | 42.0                 | 20.0 |
|      | Kalinga      | 838.0   | 382.5   | 1,299.0           | 592.9   | -                                    | -              | -      | -    | -                    | -    |
|      | Mt. Province | 2,064.0 | 1,333.2 | 1,346.0           | 869.4   | -                                    | -              | -      | -    | 21.0                 | 13.6 |

Source: Philippine Statistics Authority

| Viral Hep | oatitis | Lepr   | osy  | Schistoso | -miasis | Filaria | sis  | Leptosp | oirosis |
|-----------|---------|--------|------|-----------|---------|---------|------|---------|---------|
| Number    | Rate    | Number | Rate | Number    | Rate    | Number  | Rate | Number  | Rate    |
| 1.0       | 0.1     | 15.0   | 0.8  | -         | -       | -       | -    | 3.0     | 0.2     |
| -         | -       | 5.0    | 2.0  | -         | -       | -       | -    | -       | -       |
| -         | -       | 4.0    | 3.3  | -         | -       | -       | -    | 2.0     | 1.6     |
| -         | -       | 1.0    | 0.2  | -         | -       | -       | -    | -       | -       |
| -         | -       | 5.0    | 1.4  | -         | -       | -       | -    | -       | -       |
| -         | -       | -      | -    | -         | -       | -       | -    | 1.0     | 0.5     |
| -         | -       | -      | -    | -         | -       | -       | -    | -       | -       |
| 1.0       | 0.6     | -      | -    | -         | -       | -       | -    | -       | -       |

Table 5.6 Mortality due to Water-Related Diseases and Conditions by Sex and Age Group 2015 to 2018

|      |                                                                |       | Under 1 |               |       | 1-4 Years | <b>S</b>      | 5-9   | Years  |
|------|----------------------------------------------------------------|-------|---------|---------------|-------|-----------|---------------|-------|--------|
| Year | Cause                                                          | Male  | Female  | Both<br>Sexes | Male  | Female    | Both<br>Sexes | Male  | Female |
|      | Acute Poliomyelitis, including Late Effects                    |       |         |               |       |           |               |       |        |
|      | Anemias                                                        |       |         |               |       |           |               |       |        |
|      | Arthropod-borne Viral Encephalitis, including Late Effects     | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Cholera                                                        | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Dengue-hemorrhagic Fever                                       | -     | -       | -             | 4     | 4         | 8             | 5     | 5      |
|      | Diarrheas and Gastroenteritis of<br>Presumed Infectious Origin | 1,162 | 969     | 2,131         | 3,712 | 2,888     | 6,600         | 1,478 | 1,252  |
|      | Filariasis                                                     | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Leprosy, including Late Effects                                | -     | -       | -             | -     | -         | -             | -     | -      |
| 2015 | Leptospirosis                                                  | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Malaria                                                        | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Other Helminthiasis                                            |       |         |               |       |           |               |       |        |
|      | Other Intestinal Infectious Diseases                           |       |         |               |       |           |               |       |        |
|      | Other Protein-calorie Malnutrition                             |       |         |               |       |           |               |       |        |
|      | Pneumonia                                                      | 2,245 | 1,903   | 4,148         | 4,168 | 3,692     | 7,860         | 1,446 | 1,303  |
|      | Salmonella Infections                                          | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Schistosomiasis                                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Shigellosis and Amoebiasis                                     |       |         |               |       |           |               |       |        |
|      | Viral Hepatitis                                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Yellow Fever                                                   |       |         |               |       |           |               |       |        |
|      | Acute Poliomyelitis, including Late Effects                    |       |         |               |       |           |               | •••   | •••    |
|      | Anemias                                                        |       |         |               |       |           |               | •••   | •••    |
|      | Arthropod-borne Viral Encephalitis, including Late Effects     | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Cholera                                                        | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Dengue-hemorrhagic Fever                                       | 17    | 18      | 35            | 83    | 56        | 139           | 123   | 86     |
|      | Diarrheas and Gastroenteritis of<br>Presumed Infectious Origin | 1,316 | 1,054   | 2,370         | 4,288 | 3,383     | 7,671         | 1,876 | 1,485  |
|      | Filariasis                                                     | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Leprosy, including Late Effects                                | -     | -       | -             | -     | -         | -             | -     | -      |
| 2016 | Leptospirosis                                                  | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Malaria                                                        | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Other Helminthiasis                                            |       |         |               |       |           |               |       |        |
|      | Other Intestinal Infectious Diseases                           |       |         |               |       |           |               | •••   | •••    |
|      | Other Protein-calorie Malnutrition                             |       |         |               |       |           |               |       | •••    |
|      | Pneumonia                                                      | 1,454 | 1,148   | 2,602         | 3,087 | 2,099     | 5,186         | 1,016 | 863    |
|      | Salmonella Infections                                          |       |         |               |       |           |               | •••   | •••    |
|      | Schistosomiasis                                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Shigellosis and Amoebiasis                                     |       |         |               |       |           |               | •••   | •••    |
|      | Viral Hepatitis                                                | -     | 1       | 1             | 3     | 3         | 6             | 2     | 4      |
|      | Yellow Fever                                                   |       |         |               |       |           |               |       |        |

|               |      | 10-14 Yea | rs            | 1    | 5-19 Year: | S             | 2    | 20-24 Year | s             | 2    | 25-29 Year | S             |
|---------------|------|-----------|---------------|------|------------|---------------|------|------------|---------------|------|------------|---------------|
| Both<br>Sexes | Male | Female    | Both<br>Sexes | Male | Female     | Both<br>Sexes | Male | Female     | Both<br>Sexes | Male | Female     | Both<br>Sexes |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| 10            | 5    | 7         | 12            | 6    | 3          | 9             | 6    | 7          | 13            | 8    | 4          | 12            |
| 2,730         | 706  | 622       | 1,328         | 362  | 398        | 760           | 292  | 424        | 716           | 328  | 421        | 749           |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| _             | -    | _         | _             | _    | -          | -             | _    | -          | -             | -    | _          | -             |
| _             | _    | _         | _             | _    | -          | _             | _    | _          | _             | _    | _          | _             |
| _             | 1    | _         | 1             | _    | -          | -             | 1    | -          | 1             | -    | _          | -             |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| 2,749         | 552  | 478       | 1,030         | 296  | 271        | 567           | 215  | 312        | 527           | 238  | 342        | 580           |
| -             | _    | _         | -             | _    | -          | _             | _    | -          | _             | _    | -          | -             |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | 1    | 1          | 2             |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| 209           | 154  | 146       | 300           | 123  | 124        | 247           | 99   | 101        | 200           | 62   | 82         | 144           |
| 3,361         | 916  | 736       | 1,652         | 602  | 665        | 1,267         | 455  | 735        | -             | 419  | 543        | 962           |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| -             | -    | -         | -             | 1    | -          | -             | -    | -          | -             | 1    | -          | -             |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| 1,879         | 409  | 379       | 788           | 201  | 306        | 507           | 172  | 368        | 540           | 184  | 342        | 526           |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| 6             | 3    | 5         | 8             | 2    | 5          | 7             | 4    | 12         | 16            | 1    | 5          | 6             |
|               |      |           |               |      |            |               |      |            |               |      |            |               |

Table 5.6 Mortality due to Water-Related Diseases and Conditions by Sex and Age Group 2015 to 2018

|      |                                                                |       | Under 1 |               |       | 1-4 Years |               | 5-9   | Years  |
|------|----------------------------------------------------------------|-------|---------|---------------|-------|-----------|---------------|-------|--------|
| Year | Cause                                                          | Male  | Female  | Both<br>Sexes | Male  | Female    | Both<br>Sexes | Male  | Female |
|      | Acute Poliomyelitis, including Late Effects                    |       |         |               |       |           |               |       |        |
|      | Anemias                                                        |       |         |               |       |           |               |       |        |
|      | Arthropod-borne Viral Encephalitis, including Late Effects     | 1     | -       | 1             | -     | -         | -             | -     | -      |
|      | Cholera                                                        | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Dengue-hemorrhagic Fever                                       | 17    | 18      | 35            | 83    | 56        | 139           | 123   | 86     |
|      | Diarrheas and Gastroenteritis of<br>Presumed Infectious Origin | 621   | 484     | 1,105         | 2,151 | 1,633     | 3,784         | 1,146 | 828    |
| 2017 | Filariasis                                                     | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Leprosy, including Late Effects                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Leptospirosis                                                  | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Malaria                                                        | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Other Helminthiasis                                            |       |         |               |       | •••       |               |       | •••    |
|      | Other Intestinal Infectious Diseases                           |       |         |               |       |           |               |       |        |
|      | Other Protein-calorie Malnutrition                             |       |         |               |       | •••       |               |       | •••    |
|      | Pneumonia                                                      | 1,379 | 1,084   | 2,463         | 2,950 | 2,019     | 4,969         | 1,092 | 942    |
|      | Salmonella Infections                                          |       |         |               |       | •••       |               |       | •••    |
|      | Schistosomiasis                                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Shigellosis and Amoebiasis                                     |       |         |               |       | •••       |               |       |        |
|      | Viral Hepatitis                                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Yellow Fever                                                   |       |         |               |       |           |               |       |        |
|      | Acute Poliomyelitis, including Late Effects                    |       |         |               |       |           |               |       |        |
|      | Anemias                                                        |       |         |               |       |           |               |       |        |
|      | Arthropod-borne Viral Encephalitis, including Late Effects     | -     | -       | -             | -     | 2         | 2             | -     | -      |
|      | Cholera                                                        | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Dengue-hemorrhagic Fever                                       | 86    | 95      | 181           | 123   | 148       | 271           | 161   | 163    |
|      | Diarrheas and Gastroenteritis of<br>Presumed Infectious Origin | 454   | 385     | 839           | 1,782 | 1,443     | 3,225         | 661   | 562    |
|      | Filariasis                                                     | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Leprosy, including Late Effects                                | -     | -       | -             | -     | -         | -             | -     | -      |
| 2010 | Leptospirosis                                                  | -     | -       | -             | -     | -         | -             | 1     | -      |
| 2018 | Malaria                                                        | -     | -       | -             | -     | -         | -             |       |        |
|      | Other Helminthiasis                                            |       |         |               |       |           |               |       |        |
|      | Other Intestinal Infectious Diseases                           |       |         |               |       | •••       |               |       |        |
|      | Other Protein-calorie Malnutrition                             |       |         |               |       |           |               |       |        |
|      | Pneumonia                                                      | 1,895 | 1,671   | 3,566         | 4,041 | 3,721     | 7,762         | 1,814 | 1,843  |
|      | Salmonella Infections                                          |       |         |               |       |           |               |       |        |
|      | Schistosomiasis                                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Shigellosis and Amoebiasis                                     |       |         |               |       |           |               |       |        |
|      | Viral Hepatitis                                                | -     | -       | -             | -     | -         | -             | -     | -      |
|      | Yellow Fever                                                   |       |         |               | •••   |           |               |       | •••    |

|               |      | 10-14 Yea | rs            | 1    | 5-19 Year: | s             | 2    | 20-24 Year | s             | 2    | 25-29 Year | s             |
|---------------|------|-----------|---------------|------|------------|---------------|------|------------|---------------|------|------------|---------------|
| Both<br>Sexes | Male | Female    | Both<br>Sexes | Male | Female     | Both<br>Sexes | Male | Female     | Both<br>Sexes | Male | Female     | Both<br>Sexes |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| -             | -    | -         | -             |      |            | -             | _    | -          | -             | -    | -          | -             |
| 209           | 154  | 146       | 300           | 123  | 124        | 247           | 99   | 101        | 200           | 62   | 82         | 144           |
| 1,974         | 510  | 427       | 937           | 423  | 480        | 903           | 331  | 527        | 858           | 204  | 121        | 325           |
| -             | _    | _         | _             | _    | -          | _             | _    | -          | _             | _    | -          | -             |
| _             | _    | _         | _             | -    | -          | -             | _    | -          | -             | -    | _          | -             |
| _             | _    | _         | _             | _    | _          | _             | _    | _          | _             | _    | _          | _             |
| _             | _    | _         | _             | _    | _          | _             | _    | _          | _             | _    | _          | -             |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      | •••       | •••           |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| 2,034         | 481  | 404       | 885           | 211  | 206        | 417           | 167  | 253        | 420           | 152  | 238        | 390           |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| -             |      |           | -             |      |            |               |      |            |               | -    |            | •••           |
|               |      |           |               |      |            |               |      |            |               |      |            | -             |
|               |      |           |               |      |            |               |      |            |               |      |            | •••           |
|               |      |           |               |      |            |               |      |            |               |      |            | -             |
| •••           | •••  | •••       | •••           | •••  |            | •••           | •••  | •••        | •••           | •••  |            | •••           |
| •••           | •••  | •••       | •••           | •••  |            | •••           | •••  | •••        | •••           | •••  |            | •••           |
|               | •••  | •••       | •••           | •••  |            | •••           |      | •••        |               |      | •••        | •••           |
|               | -    | -         | -             | -    |            | -             | ļ    | -          | 1             | -    | -          | -             |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
| 324           | 168  | 136       | 304           | 161  | 169        | 330           | 97   | 95         | 192           | 87   | 51         | 138           |
| 1,223         | 304  | 191       | 495           | 215  | 188        | 403           | 150  | 175        | 325           | 140  | 170        | 310           |
| -             | -    | -         | -             | -    | -          | -             | -    | -          |               | -    | -          |               |
|               | -    | -         | -             | -    | 1          | 1             | 1    | -          |               | -    | -          |               |
|               | 1    | -         | 1             | -    | -          | -             | 1    | -          |               | -    | -          |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| •••           | •••  |           |               |      |            |               |      |            |               |      |            | •••           |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| 3,657         | 652  | 714       | 1,366         | 287  | 377        | 664           | 257  | 402        | 659           | 257  | 450        | 707           |
|               |      |           |               |      |            |               |      |            |               |      |            |               |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
|               |      |           |               |      |            |               |      |            |               |      |            | •••           |
| -             | -    | -         | -             | -    | -          | -             | -    | -          | -             | -    | -          | -             |
|               |      |           |               |      |            |               |      |            |               |      | •••        |               |

Table 5.6 Mortality due to Water-Related Diseases and Conditions by Sex and Age Group **2015 to 2018** (continued)

|      |                                                               | 3    | 80-34 Year | s             |      | 35-39 Year | 'S            | 40-4 | 4 Years |
|------|---------------------------------------------------------------|------|------------|---------------|------|------------|---------------|------|---------|
| Year | Cause                                                         | Male | Female     | Both<br>Sexes | Male | Female     | Both<br>Sexes | Male | Female  |
|      | Acute Poliomyelitis, including Late Effects                   |      |            |               |      |            |               |      |         |
|      | Anemias                                                       |      |            |               |      |            |               |      |         |
|      | Arthropod-borne Viral Encephalitis, including<br>Late Effects | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Cholera                                                       | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Dengue-hemorrhagic Fever                                      | 5    | 2          | 7             | 3    | 3          | 6             | 2    | 14      |
|      | Diarrheas and Gastroenteritis of Presumed Infectious Origin   | 288  | 386        | 674           | 249  | 357        | 606           | 238  | 311     |
|      | Filariasis                                                    | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Leprosy, including Late Effects                               | -    | -          | -             | -    | 1          | 1             | -    | -       |
| 2015 | Leptospirosis                                                 | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Malaria                                                       | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Other Helminthiasis                                           |      |            |               |      |            |               |      |         |
|      | Other Intestinal Infectious Diseases                          |      |            |               |      |            |               |      |         |
|      | Other Protein-calorie Malnutrition                            |      |            |               |      |            |               |      |         |
|      | Pneumonia                                                     | 191  | 368        | 559           | 219  | 323        | 542           | 212  | 204     |
|      | Salmonella Infections                                         | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Schistosomiasis                                               | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Shigellosis and Amoebiasis                                    |      |            |               |      |            |               |      |         |
|      | Viral Hepatitis                                               | -    | 1          | 1             | -    | -          | -             | -    |         |
|      | Yellow Fever                                                  |      |            |               |      |            |               |      |         |
|      | Acute Poliomyelitis, including Late Effects                   |      |            |               |      |            |               |      |         |
|      | Anemias                                                       |      |            |               |      |            |               |      |         |
|      | Arthropod-borne Viral Encephalitis, including<br>Late Effects | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Cholera                                                       | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Dengue-hemorrhagic Fever                                      | 68   | 65         | 133           | 54   | 66         | 120           | 42   | 68      |
|      | Diarrheas and Gastroenteritis of Presumed Infectious Origin   | 356  | 491        | 847           | 349  | 414        | 763           | 284  | 378     |
|      | Filariasis                                                    | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Leprosy, including Late Effects                               | -    | -          | -             | -    | -          | -             | -    | -       |
| 2016 | Leptospirosis                                                 | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Malaria                                                       | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Other Helminthiasis                                           |      |            |               |      |            |               |      |         |
|      | Other Intestinal Infectious Diseases                          |      |            |               |      |            |               |      |         |
|      | Other Protein-calorie Malnutrition                            |      |            |               |      | •••        |               |      |         |
|      | Pneumonia                                                     | 167  | 347        | 514           | 235  | 359        | 594           | 195  | 387     |
|      | Salmonella Infections                                         |      |            |               |      | •••        |               |      |         |
|      | Schistosomiasis                                               | -    | -          | -             | -    | -          | -             | -    | -       |
|      | Shigellosis and Amoebiasis                                    |      |            |               |      | •••        |               |      |         |
|      | Viral Hepatitis                                               | 1    | 1          | 2             | 1    | 5          | 6             | 3    | 2       |
|      | Yellow Fever                                                  |      |            |               |      |            |               |      |         |
|      |                                                               |      |            |               |      |            |               |      |         |

|               |      | 45-49 Yea | rs            |      | 50-54 Yea | rs            | <u>.</u> | 55-59 Year: | s             |      | 60-64 Yea | rs            |
|---------------|------|-----------|---------------|------|-----------|---------------|----------|-------------|---------------|------|-----------|---------------|
| Both<br>Sexes | Male | Female    | Both<br>Sexes | Male | Female    | Both<br>Sexes | Male     | Female      | Both<br>Sexes | Male | Female    | Both<br>Sexes |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| 16            | 6    | 2         | 8             | -    | 3         | 3             | -        | -           | -             | 1    | 1         | 2             |
| 549           | 245  | 294       | 539           | 283  | 321       | 604           | 157      | 286         | 443           | 171  | 215       | 386           |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | 1    | -         | 1             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
| 416           | 204  | 371       | 575           | 232  | 365       | 597           | 224      | 295         | 519           | 259  | 398       | 657           |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
|               | •••  |           |               |      |           |               |          |             |               |      |           |               |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| 110           | 38   | 45        | 83            | 36   | 47        | 83            | 31       | 39          | 70            | 15   | 30        | 45            |
| 662           | 378  | 262       | 640           | 238  | 409       | 647           | 221      | 382         | 603           | 241  | 382       | 623           |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| _             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
|               | •••  |           |               | •••  |           |               |          |             | •••           |      |           |               |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
|               | •••  |           |               |      |           |               |          |             | •••           |      |           |               |
| 582           | 178  | 391       | 569           | 274  | 380       | 654           | 314      | 488         | 802           | 283  | 489       | 772           |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -        | -           | -             | -    | -         | -             |
|               |      |           |               |      |           |               |          |             |               |      |           |               |
| 5             | 1    | 1         | 2             | 1    | 2         | 3             | 4        | 3           | 7             | 1    | -         | 1             |
|               |      |           |               |      |           |               |          |             |               |      |           |               |

Table 5.6 Mortality due to Water-Related Diseases and Conditions by Sex and Age Group **2015 to 2018** (continued)

|      |                                                             | 3    | 80-34 Year | s             |      | 35-39 Years |               | 40-4 | 4 Years |
|------|-------------------------------------------------------------|------|------------|---------------|------|-------------|---------------|------|---------|
| Year | Cause                                                       | Male | Female     | Both<br>Sexes | Male | Female      | Both<br>Sexes | Male | Female  |
|      | Acute Poliomyelitis, including Late Effects                 |      |            |               |      |             |               |      |         |
|      | Anemias                                                     |      |            |               |      |             |               |      |         |
|      | Arthropod-borne Viral Encephalitis, including Late Effects  | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Cholera                                                     | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Dengue-hemorrhagic Fever                                    | 68   | 65         | 133           | 54   | 66          | 120           | 42   | 68      |
|      | Diarrheas and Gastroenteritis of Presumed Infectious Origin | 232  | 305        | 537           | 185  | 239         | 424           | 159  | 231     |
|      | Filariasis                                                  | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Leprosy, including Late Effects                             | -    | -          | -             | -    | -           | -             | -    | -       |
| 2017 | Leptospirosis                                               | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Malaria                                                     | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Other Helminthiasis                                         |      |            |               |      |             |               |      |         |
|      | Other Intestinal Infectious Diseases                        |      |            |               |      |             |               |      |         |
|      | Other Protein-calorie Malnutrition                          |      |            |               |      |             |               |      |         |
|      | Pneumonia                                                   | 138  | 276        | 414           | 186  | 248         | 434           | 157  | 254     |
|      | Salmonella Infections                                       |      |            |               |      |             |               |      |         |
|      | Schistosomiasis                                             |      | -          | -             |      | -           | -             | -    | -       |
|      | Shigellosis and Amoebiasis                                  |      |            |               |      |             |               |      |         |
|      | Viral Hepatitis                                             |      | -          | -             |      | -           | -             | -    | -       |
|      | Yellow Fever                                                |      |            |               |      | •••         | •••           |      |         |
|      | Acute Poliomyelitis, including Late Effects                 |      |            |               |      |             |               |      |         |
|      | Anemias                                                     |      |            |               |      |             | •••           |      |         |
|      | Arthropod-borne Viral Encephalitis, including Late Effects  | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Cholera                                                     | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Dengue-hemorrhagic Fever                                    | 35   | 49         | 84            | 34   | 39          | 73            | 24   | 34      |
|      | Diarrheas and Gastroenteritis of Presumed Infectious Origin | 139  | 121        | 260           | 112  | 168         | 280           | 142  | 120     |
|      | Filariasis                                                  | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Leprosy, including Late Effects                             | 1    | -          | 1             | -    | 1           | 1             | -    | 1       |
|      | Leptospirosis                                               | -    | -          | -             | -    | -           | -             | -    | -       |
| 2018 | Malaria                                                     |      |            |               |      |             |               |      |         |
|      | Other Helminthiasis                                         |      |            |               |      |             |               |      |         |
|      | Other Intestinal Infectious Diseases                        |      |            |               |      | •••         | •••           |      |         |
|      | Other Protein-calorie Malnutrition                          |      |            |               |      |             |               |      |         |
|      | Pneumonia                                                   | 261  | 431        | 692           | 234  | 395         | 629           | 238  | 382     |
|      | Salmonella Infections                                       |      |            |               |      |             |               |      |         |
|      | Schistosomiasis                                             | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Shigellosis and Amoebiasis                                  |      |            |               |      |             |               |      |         |
|      | Viral Hepatitis                                             | -    | -          | -             | -    | -           | -             | -    | -       |
|      | Yellow Fever                                                |      |            |               |      |             |               |      |         |
|      |                                                             |      |            |               |      |             |               |      |         |

|               |      | 45-49 Yea | rs            |      | 50-54 Yea | rs            | 5    | 55-59 Year: | S             |      | 60-64 Yea | rs            |
|---------------|------|-----------|---------------|------|-----------|---------------|------|-------------|---------------|------|-----------|---------------|
| Both<br>Sexes | Male | Female    | Both<br>Sexes | Male | Female    | Both<br>Sexes | Male | Female      | Both<br>Sexes | Male | Female    | Both<br>Sexes |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           | -             |      |           |               |      |             |               |      |           |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
| 110           | 38   | 45        | 83            | 36   | 47        | 83            | 31   | 39          | 70            | 15   | 30        | 45            |
| 390           | 148  | 238       | 386           | 132  | 217       | 349           | 224  | 123         | 347           | 133  | 182       | 315           |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
|               |      |           | •••           |      |           | •••           |      |             |               |      |           |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           | •••           |      |           |               |      |             | •••           |      |           |               |
| 411           | 139  | 250       | 389           | 196  | 234       | 430           | 213  | 347         | 560           | 186  | 278       | 464           |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| -             | -    | 2         | 2             | 1    | -         | 1             | 1    | 1           | 2             | -    | -         | -             |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
| 58            | 18   | 19        | 37            | 22   | 19        | 41            | 10   | 16          | 26            | 15   | 10        | 25            |
| 262           | 122  | 172       | 294           | 116  | 120       | 236           | 111  | 151         | 262           | 126  | 180       | 306           |
|               | -    | -         |               | -    | -         |               | -    | -           |               | -    | -         |               |
|               | -    | -         |               | -    | -         |               | 1    | 1           |               | 3    | -         |               |
|               | -    | -         |               | -    | -         |               | -    | -           |               | -    | -         |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           |               |      |           |               | •••  |             | •••           |      |           | •••           |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| 620           | 248  | 377       | 625           | 244  | 488       | 732           | 299  | 377         | 676           | 345  | 486       | 831           |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
| -             | -    | -         | -             | -    | -         | -             | -    | -           | -             | -    | -         | -             |
|               |      |           |               |      |           |               |      |             |               |      |           |               |
|               |      |           |               |      |           |               |      |             |               |      |           |               |

Table 5.6 Mortality due to Water-Related Diseases and Conditions by Sex and Age Group **2015 to 2018** (continued)

|      |                                                             |      | 55-69 Year | s             | 70 Years and Over |        | Age Not Stated |      |        |               |
|------|-------------------------------------------------------------|------|------------|---------------|-------------------|--------|----------------|------|--------|---------------|
| Year | Cause                                                       | Male | Female     | Both<br>Sexes | Male              | Female | Both<br>Sexes  | Male | Female | Both<br>Sexes |
|      | Acute Poliomyelitis, including Late Effects                 |      |            |               |                   |        |                |      |        |               |
|      | Anemias                                                     |      |            |               | •••               |        |                |      |        |               |
|      | Arthropod-borne Viral Encephalitis, including Late Effects  | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Cholera                                                     | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Dengue-hemorrhagic Fever                                    | 1    | 3          | 2             |                   |        |                |      |        |               |
|      | Diarrheas and Gastroenteritis of Presumed Infectious Origin | 422  | 545        | 967           |                   |        |                |      |        |               |
|      | Filariasis                                                  | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Leprosy, including Late Effects                             | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
| 2015 | Leptospirosis                                               | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Malaria                                                     | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Other Helminthiasis                                         |      |            |               |                   |        |                |      |        |               |
|      | Other Intestinal Infectious Diseases                        |      |            |               |                   |        |                |      |        |               |
|      | Other Protein-calorie Malnutrition                          |      |            |               |                   |        |                |      |        |               |
|      | Pneumonia                                                   | 643  | 782        | 1,425         |                   |        |                |      |        |               |
|      | Salmonella Infections                                       | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Schistosomiasis                                             | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Shigellosis and Amoebiasis                                  |      |            |               |                   |        |                |      |        |               |
|      | Viral Hepatitis                                             | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Yellow Fever                                                |      |            |               |                   |        |                |      |        |               |
|      | Acute Poliomyelitis, including Late Effects                 |      |            |               |                   |        |                |      |        |               |
|      | Anemias                                                     |      |            |               |                   |        |                |      |        |               |
|      | Arthropod-borne Viral Encephalitis, including Late Effects  | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Cholera                                                     | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Dengue-hemorrhagic Fever                                    | 12   | 25         | 37            | 19                | 25     | 44             |      |        |               |
|      | Diarrheas and Gastroenteritis of Presumed Infectious Origin | 194  | 322        | 516           | 262               | 390    | 652            |      |        |               |
|      | Filariasis                                                  | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Leprosy, including Late Effects                             | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
| 2016 | Leptospirosis                                               | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Malaria                                                     | -    | -          | -             | -                 | -      | -              | -    | -      | -             |
|      | Other Helminthiasis                                         |      |            |               |                   |        |                |      |        |               |
|      | Other Intestinal Infectious Diseases                        |      |            |               |                   |        |                |      |        |               |
|      | Other Protein-calorie Malnutrition                          |      | •••        |               |                   |        |                |      |        |               |
|      | Pneumonia                                                   | 250  | 290        | 540           | 464               | 629    | 1,093          |      |        |               |
|      | Salmonella Infections                                       |      |            |               | •••               |        |                |      | •••    |               |
|      | Schistosomiasis                                             | -    | -          | -             | -                 | -      | -              |      |        |               |
|      | Shigellosis and Amoebiasis                                  |      |            |               | •••               |        |                |      |        |               |
|      | Viral Hepatitis                                             | -    | -          | -             | -                 | -      | -              |      |        |               |
|      | Yellow Fever                                                |      |            |               |                   |        |                |      |        |               |

Table 5.6 Mortality due to Water-Related Diseases and Conditions by Sex and Age Group **2015 to 2018** (continued)

| Year         Cause         Male         Female         Satella         Female         Both Sexes         Male         Pemale         Sexes           A Cute Pollomyellitis, including Late Effects         a         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                             |      | 5-69 Year | S   | 70 Y | ears and ( | Over  | Age Not Stated |        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|------|-----------|-----|------|------------|-------|----------------|--------|-----|
| Anemias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Year | Cause                                       | Male | Female    |     | Male | Female     |       | Male           | Female |     |
| Arthropod-borne Viral Encephallitis, including Late Effects  Cholera  Dengue-hemorrhagic Fever  Dengue-hemorrhagic Fever  Diarrheas and Gastroenteritis of Presumed Infectious Origin  Filariasis  Leprosy, including Late Effects  Leptospirosis  Malaria  Other Helminthiasis  Other Intestinal Infectious Diseases  Other Intestinal Infectious Diseases  Other John Salmonella Infections  Schistosomiasis  Shigellosis and Amoebiasis  Viral Hepatitis  Anemias  Anthropod-borne Viral Encephallitis, including Late Effects  Cholera  Leprosy, including Late Effects  Anemias  Anem |      | Acute Poliomyelitis, including Late Effects |      |           |     |      |            |       |                |        |     |
| Including Late Effects   Cholera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Anemias                                     |      |           |     | •••  |            |       |                |        |     |
| Dengue-hemorrhagic Fever   26   50   76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                             | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Diarrheas and Gastroenteritis of Presumed Infectious Origin   Filariasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Cholera                                     | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Infectious Origin   Filariasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Dengue-hemorrhagic Fever                    | 26   | 50        | 76  | •••  |            |       |                |        | ••• |
| Leprosy, including Late Effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                             | 183  | 282       | 465 |      |            |       |                |        |     |
| Leptospirosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Filariasis                                  | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Malaria         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td></td> <td>Leprosy, including Late Effects</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Leprosy, including Late Effects             | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Other Helminthiasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2017 | Leptospirosis                               | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Other Intestinal Infectious Diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Malaria                                     | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Other Protein-calorie Malnutrition                                                                                                       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Other Helminthiasis                         |      |           |     |      |            |       |                |        |     |
| Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Other Intestinal Infectious Diseases        |      |           |     |      |            |       |                |        |     |
| Salmonella Infections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Other Protein-calorie Malnutrition          |      |           |     |      |            |       |                |        |     |
| Schistosomiasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Pneumonia                                   | 346  | 421       | 767 |      |            |       |                |        |     |
| Shigellosis and Amoebiasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Salmonella Infections                       | •••  |           |     | •••  |            |       |                |        | ••• |
| Viral Hepatitis         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | Schistosomiasis                             | -    | -         | -   |      |            |       |                |        |     |
| Yellow Fever <t< td=""><td></td><td>Shigellosis and Amoebiasis</td><td></td><td></td><td></td><td>•••</td><td></td><td></td><td></td><td></td><td>•••</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Shigellosis and Amoebiasis                  |      |           |     | •••  |            |       |                |        | ••• |
| Acute Poliomyelitis, including Late Effects  Anemias  Arthropod-borne Viral Encephalitis, including Late Effects  Cholera  Dengue-hemorrhagic Fever  Diarrheas and Gastroenteritis of Presumed Infectious Origin  Filariasis  Leprosy, including Late Effects  - 2 1 2 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Viral Hepatitis                             | -    | -         | -   |      |            |       |                |        |     |
| Anemias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Yellow Fever                                |      |           |     | •••  |            |       |                |        |     |
| Arthropod-borne Viral Encephalitis, including Late Effects  Cholera  Choler |      | Acute Poliomyelitis, including Late Effects |      |           |     | •••  |            |       |                |        |     |
| including Late Effects  Cholera  Choler |      | Anemias                                     |      |           | ••• | •••  |            |       |                |        |     |
| Dengue-hemorrhagic Fever   23   24   47   7   19   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                             | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Diarrheas and Gastroenteritis of Presumed Infectious Origin   178   305   64   101   165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Cholera                                     | -    | -         | -   | -    | -          | -     | -              | -      | -   |
| Infectious Origin   Filariasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Dengue-hemorrhagic Fever                    | 23   | 24        | 47  | 7    | 19         | 47    |                |        |     |
| Leprosy, including Late Effects         -         2         1         2         3              Leptospirosis         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td></td><td>127</td><td>178</td><td>305</td><td>64</td><td>101</td><td>165</td><td>•••</td><td></td><td>•••</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                             | 127  | 178       | 305 | 64   | 101        | 165   | •••            |        | ••• |
| 2018       Leptospirosis       -       -       -       -       -       -       -                                                                                                       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Filariasis                                  | -    | -         |     | -    | -          | -     |                |        |     |
| 2018       Malaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Leprosy, including Late Effects             | -    | 2         |     | 1    | 2          | 3     |                |        |     |
| Malaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2010 | Leptospirosis                               | -    | -         |     | -    | -          | -     |                |        |     |
| Other Intestinal Infectious Diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2018 | Malaria                                     |      |           |     |      |            |       |                |        |     |
| Other Protein-calorie Malnutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Other Helminthiasis                         |      |           |     |      |            |       |                |        |     |
| Pneumonia         309         444         753         527         642         1,169           Salmonella Infections                                                                                              <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Other Intestinal Infectious Diseases        |      |           |     |      |            |       |                |        |     |
| Salmonella Infections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Other Protein-calorie Malnutrition          |      |           |     | •••  |            |       |                |        |     |
| Schistosomiasis       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Pneumonia                                   | 309  | 444       | 753 | 527  | 642        | 1,169 |                |        |     |
| Shigellosis and Amoebiasis                                                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Salmonella Infections                       |      |           |     |      |            |       |                |        |     |
| Viral Hepatitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Schistosomiasis                             | -    | -         | -   | -    | -          | -     |                |        |     |
| Vollous Fores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Shigellosis and Amoebiasis                  |      |           |     |      |            |       |                |        |     |
| Yellow Fever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                                             | -    | -         | -   | -    | -          | -     |                |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Yellow Fever                                |      |           |     |      |            |       |                |        |     |





# **COMPONENT SIX ENVIRONMENT PROTECTION, MANAGEMENT AND ENGAGEMENT**

Component 6 tackles environment protection and resource management expenditure and economic and social instruments to regulate and manage various environmental issues and concerns. The component gathers statistics with the aim of improving the environment and maintaining the health of ecosystems. It comprises four subcomponents: (1) environment protection and resource management expenditure; (2) environmental governance and regulation; (3) extreme event preparedness and disaster management; and (4) environmental information and awareness. There are only three core statistics compiled for this component i.e., annual government environment protection expenditure, list of regulated pollutants and description, and list and description of multilateral environment agreements and other global environment conventions. All the three sets of statistics were available at the national level and is also presented in this compendium. These statistics were lifted from the 2016 CPES.

The component also includes information on the institutional strength of environmental authorities and other related agencies, as well as the regulations in place to preserve the environment by setting limits on pollution and extraction from the environment. These regulations act as instruments towards achieving the Sustainable Development Goals on clean energy (SDG 7), responsible consumption and production (SDG 12), protecting life below water and on land (SDG 14 and 15), and climate change mitigation (SDG 13). Component six also focuses on the engagement of the country on global partnership, which is anchored on SDG 17, "Partnership for Goal's".

### 6.1. Environmental protection and resource management expenditure

## 6.1.1. Annual government environmental protection expenditure

It is recommended in the FDES to compile information on the expenditures for both activities of private and public sectors on the expenditure on environmental protection but only the public expenditure is considered a core statistic. The Department of Budget and Management (DBM) provided information on funds allocated to each department for climate change related activities, waste and wastewater management, environmental protection research and development and other environmental protection related activities. Expenditure allocation for each priority of the National Climate Change Action Plan (NCCAP) was also compiled. The NCCAP is a plan translating the National Framework Strategy on Climate Change (NFSCC) in climate change resiliency, environmental and ecological stability, human security, sustainable energy, climate-smart industry and services, and knowledge and capacity development.

### 6.2. **Environmental governance and regulation**

# 6.2.1. List of regulated pollutants and description

Lists of regulated pollutants were gathered from existing laws and administrative orders of the Department of Environment and Natural Resources. These instruments are enforced to limit the amount of pollutants emitted to air and water.

The Philippine Republic Act No. 8749, also known as the Philippine Clean Air Act, was signed into law on 23 June 1999 to enforce the right to clean air. It sets standards on air pollutants by stationary (i.e. buildings and other immobile structures) and mobile sources (i.e. vehicles), and sets the national ambient quality guidelines for criteria-specific and source-specific hazardous pollutants.

Pursuant to RA 7849, several Department Administrative Orders (DAOs) were also implemented to set limits on mobile vehicle emissions. DAO No. 2010-23 and 2010-24 are recent administrative orders that contain a revised set of guidelines for regulating emissions from compression-ignition (e.g. diesel engine) and spark-ignition (e.g. gasoline engine) motor vehicles and motorcycles/tricycles and mopeds, respectively. DAO 2013-13 establishes the national ambient air quality guideline for Particulate Matter 2.5, a type of pollutant. As of 2015, DAO No. 2015-04 enforces a set of emissions limits to be followed by Euro 4/IV and In-Use Vehicles. Euro IV vehicles are vehicles calibrated to release emissions following the European emission standards.

Apart from regulations on air emissions, the DENR issued administrative orders on regulating water quality. DAO No. 1994-26A revises the National Standards for Drinking Water of 1978 in pursuant of Presidential Decree No. 856, or the Code on Sanitation of the Philippines. It sets the acceptable values of parameters on the bacteriological, biological, chemical, physical and radiological quality for drinking water, as well as the guidelines for sampling and evaluation.

Furthermore, quality guidelines are enlisted in DAO No. 2016-08 for water bodies. The administrative order sets limits to primary and secondary parameters for each category of fresh and marine surface water and groundwater. Primary parameters include biochemical oxygen demand (BOD), chloride, color, minimum dissolved oxygen, fecal coliform, nitrate (as NO3 – N), pH, phospate, temperature and total suspended solids. Secondary parameters include several inorganics, organics and metals. The DAO also lists the significant parameters to be monitored for each industry, as well as the maximum allowable limits of effluents.

# 6.2.2. List and description of Multilateral Environmental Agreements (MEA) and other global environmental conventions

Table 6.4 lists 38 of the international conventions, agreements and organizations that the Philippines is engaged with, as well as their objectives and the dates of signature, ratification, approval, adoption and/or entry into force.

The oldest organization where the country is a member is the International Hydrographic Organization (IHO). The organization was established in 1921 aimed at nautical navigation safety and marine environment protection.

The Philippines is also part of the United Nations Environmental Assembly (UNEA), the world's highest authority for global environmental agenda. During its first assembly, the UNEA tackled issues on air pollution, waste and illegal wildfire trade.





# **STATISTICAL TABLES Environment Protection, Management** and Engagement

**Table 6.1.1** Initial List and Values of Hazardous Air Pollutants for National Ambient Air Quality Guideline for Criteria **Pollutants** 

| Pollutants                  | Short Ter               | m¹   |                       | Long   | Term <sup>2</sup> |                       |
|-----------------------------|-------------------------|------|-----------------------|--------|-------------------|-----------------------|
| Pollutants                  | μg/Ncm                  | ppm  | <b>Averaging Time</b> | μg/Ncm | ppm               | <b>Averaging Time</b> |
| Suspended Particula         | nte Matter <sub>3</sub> |      |                       |        |                   |                       |
| TSP                         | 230 <sup>4</sup>        |      | 24 hours              | 90     |                   | 1 year⁵               |
| PM 10                       | 150 <sup>6</sup>        |      | 24 hours              | 60     |                   | 1 year⁵               |
| Sulfur Dioxide <sup>3</sup> | 180                     | 0.07 | 24 hours              | 80     | 0.03              | 1 year                |
| Nitrogen Dioxide            | 150                     | 0.08 | 24 hours              | •••    |                   | •••                   |
| Photochemical Oxidants      | 140                     | 0.07 | 1 hour                |        |                   |                       |
| As Ozone                    | 60                      | 0.03 | 8 hours               |        | •••               |                       |
| Carbon<br>Monoxide          | 35 mg/Ncm               | 30   | 1 hour                |        |                   |                       |
|                             | 10 mg/Ncm               | 9    | 8 hours               |        |                   |                       |
| Lead <sup>7</sup>           | 1.5                     |      | 3 months,             | 1      |                   | 1 year                |

Maximum limits represented by ninety-eight percentile (98%) values not to be exceed more than once a year.

Source: RA 8749 - Philippine Clean Air Act of 1999

**Table 6.1.2 Initial List and Values of Hazardous Air Pollutants** For National Ambient Air Quality Standards for Source Specific Air Pollutants from Industrial **Sources/Operations** 

| Pollutants <sup>1</sup>                                         | Concentr | ation <sup>2</sup> | Averaging time | Mothed of Applysis / Mansuraments                       |
|-----------------------------------------------------------------|----------|--------------------|----------------|---------------------------------------------------------|
| Pollutants                                                      | μg/Ncm   | ppm                | (in minutes)   | Method of Analysis/ Measurement <sup>3</sup>            |
| Ammonia                                                         | 200      | 0.28               | 30             | Nesselerization/IndoPhenol                              |
| Carbon Disulfide                                                | 30       | 0.01               | 30             | Tischer Method                                          |
| Chlorine and Chlorine<br>Compounds expressed as Cl <sup>2</sup> | 100      | 0.03               | 5              | Methyl Orange                                           |
| Formaldehyde                                                    | 50       | 0.04               | 30             | Chromotropic acid Method or MBTH<br>Colorimetric Method |
| Hydrogen Chloride                                               | 200      | 0.13               | 30             | Volhard Titration with Iodine Solution                  |
| Hydrogen Sulfide                                                | 100      | 0.07               | 30             | Methylene Blue                                          |
| Lead                                                            | 20       |                    | 30             | AAS <sup>3</sup>                                        |
| Nitrogen Dioxide                                                | 375,260  | 0.20,0.14          | 30,60          | Greiss- Saltzman                                        |
| Phenol                                                          | 100      | 0.03               | 30             | 4-Aminoantiphyrine                                      |
| Sulfur Dioxide                                                  | 470, 340 | 0.18, 0.13         | 30,60          | Colorimetric-Pararosaniline                             |
| Suspended Particulate Matter                                    | 300      |                    | 60             | Gravimetric                                             |

<sup>1</sup> Pertinent ambient standards for Antimony, Arsenic, Cadmium, Asbestos, Nitric Acid and Sulfuric Acid Mists in the 1978 NPCC Rules and Regulations may be considered as guides in determining

<sup>&</sup>lt;sup>3</sup>SO2 and Suspended Particulate matter are sampled once every six days when using the manual methods. A minimum of twelve sampling days per quarter of forty-eight sampling days each year is required for these methods. Daily sampling may be done in the future once continuous analyzers are procured and become available.

Limits for Total Suspended Particulate Matter with mass median diameter less than 25-50 um.

<sup>6</sup> Provisional limits for Suspended Particulate Matter with mass median diameter less than 10 microns and below until sufficient monitoring data are gathered to base a proper guideline.

<sup>&</sup>lt;sup>7</sup>Evaluation of this guideline is carried out for 24-hour averaging time and averaged over three moving calendar months. The monitored average value for any three months shall not exceed the guideline value.

<sup>&</sup>lt;sup>2</sup> Ninety-eight percentile (98%) values of 30-minute sampling measured at 250C and one atmosphere pressure. <sup>3</sup> Other equivalent methods approved by the Department may be used. Source: RA 8749 - Philippine Clean Air Act of 1999

**Table 6.1.3** Maximum Limits of Concentration of Air Pollutants at the Point of Emission with Respect to any Trade, Industry, Process, and Fuel-burning equipment or Industrial Plant

| Pollutants                                                           | Standard Applicable to<br>Source                                              | Maximum Permissible Limits (mg/Ncm)                                                   | Method of Analysis <sup>1</sup>             |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|
| Antimony and Its compounds                                           | Any source                                                                    | 10 as Sb                                                                              | AAS <sup>2</sup>                            |
| Arsenic and its compounds                                            | Any source                                                                    | 10 as As                                                                              | AAS <sup>2</sup>                            |
| <ol><li>Cadmium and its compounds</li></ol>                          | Any source                                                                    | 10 as Cd                                                                              | AAS <sup>2</sup>                            |
| 4. Carbon Monoxide                                                   | Any industrial Source                                                         | 500 as CO                                                                             | Orsat analysis                              |
| <ol><li>Copper and its<br/>Compounds</li></ol>                       | Any industrial source                                                         | 100 ax Cu                                                                             | AAS <sup>2</sup>                            |
| 6. Hydrofluoric Acids and Fluoride compounds                         | Any source other than the manufacture of Aluminum from Alumina                | 50 as HF                                                                              | Titration with Ammonium Thiocyanate         |
| 7. Hydrogen Sulfide                                                  | "i) Geothermal Power Plants<br>ii) Geothermal Exploration and<br>well-testing | 3,4                                                                                   | "<br>Cadmium Sulfide Method                 |
|                                                                      | iii) Any source other than (i)<br>and (ii)"                                   | 5                                                                                     | Cadmium Sulfide Method"                     |
|                                                                      |                                                                               | 7 as H2S                                                                              |                                             |
| 8. Lead                                                              | Any trade, industry or process                                                | 10 as Pb                                                                              | AAS <sup>2</sup>                            |
| 9. Mercury                                                           | Any Source                                                                    | 5 as elemental Hg                                                                     | AASb/Cold-Vapor Technique or<br>Hg Analyzer |
| 10. Nickel and its compounds,<br>except Nickel Carbonyl <sup>6</sup> | Any source                                                                    | 20 as Ni                                                                              | AAS2                                        |
| 11. NOx                                                              | i) Manufacture of Nitric Acid                                                 | 2,000 as acid and NOx Phenol-<br>disulfonic acid and calculated<br>as NO <sub>2</sub> | Phenol-disulfonic acid Method               |
|                                                                      | ii) Fuel burning steam<br>generators                                          |                                                                                       | Phenol-disulfonic acid Method               |
|                                                                      | Existing Source                                                               | 1,500 as NO <sub>2</sub>                                                              |                                             |
|                                                                      | New Source                                                                    |                                                                                       |                                             |
|                                                                      | <ul> <li>Coal-Fired</li> </ul>                                                | 1,000 as NO <sub>2</sub>                                                              |                                             |
|                                                                      | • Oil-Fired                                                                   | 500 as NO <sub>2</sub>                                                                |                                             |
|                                                                      | iii) Any source other than (i) and (ii)                                       |                                                                                       | Phenol-disulfonic acid Method               |
|                                                                      | Existing Source                                                               | 1000 as NO <sub>2</sub>                                                               |                                             |
|                                                                      | New Source                                                                    | 500 as NO <sub>2</sub>                                                                |                                             |
| 12. Phosphorus Pentoxide7                                            | Any source                                                                    | 200 as P <sub>2</sub> O <sub>5</sub>                                                  | Spectrophotometry                           |
| 13. Zinc and its Compounds                                           | Any source                                                                    | 100 as Zn                                                                             | AAS <sub>2</sub>                            |

<sup>&</sup>lt;sup>1</sup> Other equivalent methods approved by the Department may be used.

<sup>7</sup>Provisional Gudeline

<sup>&</sup>lt;sup>2</sup> Atomic Absorption Specttrophotometry
<sup>3</sup> All new geothermal power plants starting construction by 01 January 1995 shall control HSS emissions to not more than 150 g/GMW-Hr
<sup>4</sup> All existing geothermal power plants shall control HSS emissions to not more than 200 g/GMW-Hr within 5 years from the date of effectivity of these revised regulations.

<sup>&</sup>lt;sup>5</sup> Best practicable control technology for air emissions and liquid discharges. Compliance with air and water quality standards is required. <sup>6</sup> Emission limit of Nickel Carbonyl shall not exceed 0.5 mg/Ncm.

**Table 6.1.4** Maximum Limits of Particulates in Stationary Sources In milligram per normal cubic meters (mg/Ncm)

| Sources                                  | Maximum Limits (mg/Ncm) |
|------------------------------------------|-------------------------|
| 1. Fuel Burning Equipment                |                         |
| a) Urban or Industrial Area              | 150                     |
| b) Other Area                            | 200                     |
| 2. Cement Plants (Kilns, etc.)           | 150                     |
| 3. Smelting Furnaces                     | 150                     |
| 4. Other Stationary Sources <sup>1</sup> | 200                     |

Other Stationary Sources means a trade, process, industrial plant, or fuel burning equipment other than thermal power plants, industrial boilers, cement plants, incinerators and smelting furnaces. Source: RA 8749 - Philippine Clean Air Act of 1999

**Table 6.1.5 Maximum Limits for Sulfur Oxides in Stationary Sources** 

| (1) Existing Sources                                   |                    |
|--------------------------------------------------------|--------------------|
| (i) Manufacture of Sulfuric Acid and Sulfation Process | 2.0 gm. Ncm as SO3 |
| (ii) Fuel burning Equipment                            | 1.5 gm. Ncm as SO2 |
| (iii) Other Stationary Sources <sup>1</sup>            | 1.0 gm. Ncm as SO3 |
| (1) New Sources                                        |                    |
| (i) Manufacture of Sulfuric Acid and Sulfation Process | 1.5 gm. Ncm as SO3 |
| <sup>(</sup> ii <sup>)</sup> Fuel burning Equipment    | 0.7 gm. Ncm as SO2 |
| (iii) Other Stationary Sources <sup>1</sup>            | 0.2 gm. Ncm as SO3 |

Other Stationary Sources means a trade, process, industrial plant, or fuel burning equipment other than thermal power plants, industrial boilers, cement plants, incinerators and smelting furnaces. Source: RA 8749 - Philippine Clean Air Act of 1999

**Table 6.1.6** Maximum Limits for Exhaust Gas in Other Stationary Sources of Pollution, Daily and Half Hourly Average Values

|                                                                                                                                                                    | Daily Average Values  | Half Hourly Average Values |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|
| Total dust                                                                                                                                                         | 10 mg/m <sup>3</sup>  | 30 mg/m <sup>3</sup>       |
| Gaseous and vaporous organic substances, expressed as total organic carbon                                                                                         | 10 mg/m <sup>3</sup>  | 20 mg/m <sup>3</sup>       |
| Hydrogen chloride (HCI)                                                                                                                                            | 10 mg/m³              | 60 mg/m <sup>3</sup>       |
| Hydrogen fluoride (HF)                                                                                                                                             | 1 mg/m³               | 4 mg/m <sup>3</sup>        |
| Sulfur dioxide (SO <sub>2</sub> )                                                                                                                                  | 50 mg/m³              | 2000 mg/m <sup>3</sup>     |
| Nitrogen monoxide (NO) and Nitrogen dioxide (NO <sub>2</sub> ), expressed as nitrogen dioxide for incineration plants with a capacity exceeding 3 tonnes per hour  | 200 mg/m <sup>3</sup> | 400 mg/m <sup>3</sup>      |
| Nitrogen monoxide (NO) and nitrogen dioxide (NO <sub>2</sub> ), expressed as nitrogen dioxide for incineration plants with a capacity of 3 tonnes per hour or less | 300 mg/m <sup>3</sup> |                            |
| Ammonia                                                                                                                                                            | 10 mg/m <sup>3</sup>  | 20 mg/m³                   |

**Table 6.1.7** Maximum Limits for Exhaust Gas in Other Stationary Sources of Pollution, All the Average Values Over the Sample Period of a Minimum of 4 Hours and Maximum of 8 Hours

|                                                          | Average Values over the Sample<br>Period |
|----------------------------------------------------------|------------------------------------------|
| Cadmium and its compounds, expressed as cadmium (Cd)     | total 0.5 mg/m <sup>3</sup>              |
| Thallium and its compounds, expressed as thallium (TI)   | total 0.5 mg/m <sup>4</sup>              |
| Mercury and its Compounds, expressed as mercury (Hg)     | 0.05 mg/m <sup>3</sup>                   |
| Antimony and its compounds, expressed as antimony (Sb)   | total 0.5 mg/m³                          |
| Arsenic and its compounds, expressed as arsenic (As)     | total 0.5 mg/m <sup>4</sup>              |
| Lead and its compounds, expressed as lead ( Pb)          | total 0.5 mg/m⁵                          |
| Chromium and its compounds, expressed as chromium (Cr)   | total 0.5 mg/m <sup>6</sup>              |
| Cobalt and its compounds, expressed as cobalt (Co)       | total 0.5 mg/m <sup>7</sup>              |
| Copper and its compounds, expressed as copper (Cu)       | total 0.5 mg/m <sup>8</sup>              |
| Manganese and its compounds, expressed as manganese (Mn) | total 0.5 mg/m <sup>9</sup>              |
| Nickel and its compounds, expressed as nickel (Ni)       | total 0.5 mg/m <sup>10</sup>             |
| Vanadium and its compounds, expressed as vanadium (V)    | total 0.5 mg/m <sup>11</sup>             |
| Tin and its compounds, expressed as tin (Sn)             | total 0.5 mg/m <sup>12</sup>             |

Source: RA 8749 - Philippine Clean Air Act of 1999

**Table 6.1.8** Emission Limits for Light Duty Vehicles Type Approval (Directive 91/1441/EEC)

| CO (g/km) <sup>1</sup> | HC + Nox (g/km) <sup>2</sup> | PM (g/km) <sup>3</sup> |
|------------------------|------------------------------|------------------------|
| 2.72                   | 0.97                         | 0.14                   |

<sup>&</sup>lt;sup>1</sup>Carbon Monoxide in gram per kilometer

Source: RA 8749 - Philippine Clean Air Act of 1999

**Table 6.1.9** Emission Limits for Light Commercial Vehicles Type Approval (Directive 93/59/EEC)

|            | Reference Weight (RW)<br>(kg) | CO (g/km) <sup>1</sup> | HC + NOx (g/km) <sup>2</sup> | PM (g/km) <sup>3</sup> |
|------------|-------------------------------|------------------------|------------------------------|------------------------|
| Category 1 | 1250< RW                      | 2.72                   | 0.97                         | 0.14                   |
| Category 2 | 1250< RW<1700                 | 5.17                   | 1.40                         | 0.19                   |
| Category 3 | RW>1700                       | 6.90                   | 1.70                         | 0.25                   |

<sup>&</sup>lt;sup>1</sup>Carbon Monoxide in gram per kilometer

Source: RA 8749 - Philippine Clean Air Act of 1999

**Table 6.1.10** Emission Limits for Heavy Duty Vehicles Type Approval (Directive 91/542/EEC)

| CO (g/k/Wh) | HC (g/k/Wh) | NOx (g/k/Wh) | PM (g/k/Wh)       |
|-------------|-------------|--------------|-------------------|
| 4.5         | 1.1         | 8            | 0.36 <sup>1</sup> |

<sup>&</sup>lt;sup>1</sup>Carbon Monoxide in grams per kilowatt-hour

<sup>&</sup>lt;sup>2</sup>Hydrocarbons plus Nitrogen oxides in gram per kilometer

<sup>&</sup>lt;sup>3</sup>Particulate matter in gram per kilometer; value for compression-ignition engines only

<sup>&</sup>lt;sup>3</sup>Particulate matter in gram per kilometer <sup>3</sup>Particulate matter in gram per kilometer; value for compression-ignition engines only

<sup>&</sup>lt;sup>2</sup> Hydrocarbons in gram per kilowatt-hour

<sup>&</sup>lt;sup>3</sup> Nitrogen oxides in gram per kilowatt-hour

<sup>&</sup>lt;sup>4</sup> Particulate matter in gram per kilowatt-hour

In the case of engines of 85 kW or less, the limit value for particular emissions in increased by multiplying the quoted limit by a coefficient of 1.7

**Table 6.1.11** TYPE APPROVAL EMISSION LIMITS FOR PASSENGER VEHICLES (M) AND LIGHT DUTY VEHICLES (N1), EURO 2

| Category/Class of<br>Vehicle**         |       | Limit Values                                                                                      |        |                                                                                        |        |                                                     |           |
|----------------------------------------|-------|---------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------|--------|-----------------------------------------------------|-----------|
|                                        |       | Reference Mass Mass of Carbon<br>Monoxide<br>RW L <sub>1</sub><br>(kg) (g/km)                     |        | Combined Mass of<br>Hydrocarbons and Oxides<br>of Nitrogen<br>L <sub>2</sub><br>(g/km) |        | Mass of<br>Particulates<br>L <sub>3</sub><br>(g/km) |           |
| Category                               | Class |                                                                                                   | Petrol | Diesel                                                                                 | Petrol | Diesel(1)                                           | Diesel(1) |
| M( <sup>2</sup> )                      | -     | all                                                                                               | 2.20   | 1.0                                                                                    | 0.5    | 0.7                                                 | 0.08      |
| N1(3)                                  | I     | RW ≤ 1,250                                                                                        | 2.2    | 1.0                                                                                    | 0.5    | 0.7                                                 | 0.08      |
|                                        | II    | 1,250 <rw≤1,700< td=""><td>4.0</td><td>1.25</td><td>0.6</td><td>1.0</td><td>0.12</td></rw≤1,700<> | 4.0    | 1.25                                                                                   | 0.6    | 1.0                                                 | 0.12      |
| di i i i i i i i i i i i i i i i i i i | III   | 1,700 <rw< td=""><td>5.0</td><td>1.5</td><td>0.7</td><td>1.2</td><td>0.17</td></rw<>              | 5.0    | 1.5                                                                                    | 0.7    | 1.2                                                 | 0.17      |

<sup>(1)</sup> Until 01 January 2011, for vehicles fitted with diesel engines of the direct injection type, the limit values L2 and L3 are the following:

|                                 |     | <u>L1</u> | L2   |
|---------------------------------|-----|-----------|------|
| category M(2) and N1(2) class I |     | 0.9       | 0.10 |
| category N1(3) class II         | 1.3 | 0.14      |      |
| category N1(3) class III        |     | 1.6       | 0.20 |

<sup>(2)</sup> Except:

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

**Table 6.1.12 EMISSION LIMITS FOR HEAVY DUTY VEHICLE TYPE APPROVAL (EURO II)** 

| Type of Engine           | Class of Vehicle    | CO<br>(g/kWh) | HC<br>(g/kWh) | NOx<br>(g/kWh) | PM<br>(g/kWh) |
|--------------------------|---------------------|---------------|---------------|----------------|---------------|
| Compression-<br>ignition | Heavy Duty Vehicles | 4.0           | 1.1           | 7.0            | 0.15          |

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

**Table 6.1.13** EMISSION STANDARDS FOR VEHICLES WITH SPARK-IGNITION ENGINES (GASOLINE)\*,\*\*\* **EXCEPT MOTORCYCLES** 

| Vehicle Registration                                                                       | CO<br>(% by Volume) | HC<br>(ppm as Hexane) |
|--------------------------------------------------------------------------------------------|---------------------|-----------------------|
| Registered for the first time after<br>December 31, 2007                                   | 0.5                 | 250                   |
| Registered for the first time on or after<br>January 1, 2003 but before<br>January 1, 2008 | 3.5                 | 600                   |
| Registered for the first time prior to December 31, 2002                                   | 4.5                 | 800                   |

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

<sup>-</sup>vehicles designed to carry more than six occupants including the driver

<sup>-</sup>vehicles whose maximum mass exceed 2,500 kg

<sup>(3)</sup> And those category M vehicles which are specified in footnote (2)

<sup>\*\*</sup>For the purpose of this DAO, "vehicle category" refers to a classification of power-drive vehicles in accordance with PNS 1891

**Table 6.1.14** EMISSION STANDARDS FOR VEHICLES WITH COMPRESSION-IGNITION ENGINES (DIESEL)\*,\*\*

| Vehicle Registration                                                                                                               | Light absorption coefficient                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Registered for the first time after<br>December 31, 2007                                                                           | 2                                                                                           |
| Registered for the first time on or after<br>January 1, 2003 but before<br>January 1, 2008                                         | 2.5                                                                                         |
| Registered for the first time prior to December 31, 2002  *at idle **Subject to Sec.8, Validity of Certificate of Conformity (COC) | <ul><li>2.5</li><li>3.5 (turbocharged)</li><li>4.5 (1,000m increase in elevation)</li></ul> |

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

Table 6.1.15 EMISSION STANDARDS FOR REBUILT AND IMPORTED USED VEHICLES

| Vehicle Registration                                                                         | CO <sup>a</sup><br>(% by Volume) | Hc <sup>a</sup><br>(ppm as Hexane) | Light absorption coefficient<br>m-1, k<br>(turbocharged) <sup>b</sup> |
|----------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------------------------------------------|
| Registered for the first<br>time after December<br>31, 2007<br>a - spark-ignition (gasoline) |                                  | 2.50                               | 2.0                                                                   |

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

**Table 6.1.16 EMISSION LIMITS FOR MOTORCYCLE (L3)** LEVEL 1 WITH EFFECTIVITY TWO (2) YEARS AFTER THE APPROVAL DATE OF THIS ADMINISTRATIVE ORDER

|            |     | Emission Limits (g/km) for Type Approval and Conformity of Production |                      |                             |  |  |
|------------|-----|-----------------------------------------------------------------------|----------------------|-----------------------------|--|--|
| Class (cc) |     | Carbon Monoxide<br>(CO)                                               | Hydrocarbons<br>(HC) | Oxides of Nitrogen<br>(NOx) |  |  |
| <150       | 5.5 |                                                                       | 1.2                  | 0.3                         |  |  |
| >150       | 5.5 |                                                                       | 1                    | 0.3                         |  |  |

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

**Table 6.1.17** EMISSION LIMITS FOR MOTORTRICYCLE/TRICYCLE(L4)

|           |   | Emission Limits (g/km) for Type Approval and Conformity of Production |                   |                                  |   |
|-----------|---|-----------------------------------------------------------------------|-------------------|----------------------------------|---|
| Class (cc | ) | Carbon Monoxide<br>(CO)                                               | Hydrocarb<br>(HC) | oons Oxides of Nitrogen<br>(NOx) | 1 |
| All       | 7 |                                                                       | 1.5               | 0.4                              |   |

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

b - for compression-ignition (diesel) motor vehicles

<sup>\*</sup> applicable only to vehicles listed in Sec 3.1.1-3.1.5 of Executive Order 156

**Table 6.1.18 EMISSION LIMITS FOR MOTORCYCLE (L3)** LEVEL 2 WITH EFFECTIVITY THREE (3) YEARS AFTER THE EFFECTIVITY OF LEVEL 1

|                      | Emission Limits (g/km)  |                      |                             |  |
|----------------------|-------------------------|----------------------|-----------------------------|--|
| Class (cc)           | Carbon Monoxide<br>(CO) | Hydrocarbons<br>(HC) | Oxides of Nitrogen<br>(NOx) |  |
| <150                 | 2.0                     | 0.8                  | 0.15                        |  |
| (UDC cold)[1]        |                         |                      |                             |  |
| >150                 | 2.0                     | 0.3                  | 0.15                        |  |
| (UDC + EUD cold) [2] |                         |                      |                             |  |

<sup>[1]</sup> Test cycle: ECE\* R40 (emission measured for all six modes - sampling starts at T=0)

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

**Table 6.1.19 EMISSION LIMITS FOR MOPED (L1)** 

| Fff - stiller                                                  | Emission Limits (g/km) for Type Approval and Conformity of<br>Production |                                         |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|--|--|
| Effectivity                                                    | Carbon Monoxi<br>(CO)                                                    | de Hydrocarbons + Oxides of<br>Nitrogen |  |  |
| Level 1 - Two (2) years after the approval of this DAO         | 6 (1)                                                                    | 3 (1)                                   |  |  |
| Level 2 - Three (3) years after the implementations of Level 1 | 1 (2)                                                                    | 1.2                                     |  |  |

<sup>(1)</sup> The limit values for the masses of CO and HC+NOx are multiplied by a factor of 2 in the case of three-wheel mopeds;

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

**Table 6.1.20 EMISSION LIMITS FOR IN-USE MOTORCYCLE/TRICYCLE AND MOPED** 

|                                                                            |                                | <b>Emission Standards</b> |                            |
|----------------------------------------------------------------------------|--------------------------------|---------------------------|----------------------------|
| Vehicle Registration Date                                                  | Carbon Monoxide<br>(% by vol.) | Hydrocarbon<br>(ppm)      | White smoke<br>(% opacity) |
| Registered for the first time prior to January 1, 2003                     | 6                              | 6,500                     | 30                         |
| Registered for the first time from January 1, 2003 up to December 31, 2011 | 4.5                            | 6,500                     | 30                         |
| Registered for the first time on or after January 1, 2012                  | 3.5                            | 4,500                     | 30                         |

Source: Department of Environment and Natural Resources Administrative Order No. 2010-23

<sup>[2]</sup> Test cycle: ECE\* R40 + EIDC\*\* (emissions measure from all modes - sampling starts at T=0, with the maximum speed of 120km/h)

<sup>\*</sup>Economic Commission for Europe

<sup>\*\*</sup>Extra Urban Driving Cycle

<sup>(2)</sup> The limit for the mass of CO must be 3.5 g/km in case of three-wheel mopeds

**Table 6.1.21** THE PROVISIONAL NATIONAL AMBIENT AIR QUALITY GUIDELINE VALUES (NAAQGV) FOR PM2.5

| Pollutant         | Short-term(¹) |                | Long-term(²) |                | Implementation                                                   |
|-------------------|---------------|----------------|--------------|----------------|------------------------------------------------------------------|
|                   | μg/Ncu.m.     | Averaging time | μg/Ncu.m.    | Averaging time | Period                                                           |
| PM <sub>2.5</sub> | 75(³)         | 24 hours       | 35(³)        | 1 Year         | Upon effectivity<br>date of the DAO<br>until 31 December<br>2015 |
|                   | 50(³)         | 24 hours       | 25(³)        | 1 Year         | 01 January 2016                                                  |

<sup>(1)</sup> Maximum limits represented by ninety eight percentile (98%) values not to be exceeded more than once a year

**Table 6.1.22** STANDARD PARAMETERS AND VALUES FOR DRINKING-WATER QUALITY STANDARD VALUES FOR BACTERIOLOGICAL QUALITY

|    | Source and Mode of Supply                                                                                                   |    | Bacteria                                                          | Standard Value<br>(No./100mL)                                                                                                                                                                   |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| a. | All drinking-water supplies<br>under all circumstances (Level<br>I, II, III, Bottled water and<br>Emergency Water Supplies) | E. | Coli or Thermotolerant (fecal) coliform bacteria                  | 0                                                                                                                                                                                               |  |  |  |
| b. | Treated water entering distribution system                                                                                  | E. | Coli or Thermotolerant (fecal) coliform bacteria  Total coliforms | 0                                                                                                                                                                                               |  |  |  |
| C. | cTreated water in the distribution system  E. E. Coli or Thermotolerant (fecal) coliform bacteria  Total coliforms          |    | (fecal) coliform bacteria                                         | Must not be detecatable in any 100ml sample. In case of large supplies where sufficient samples are examined, it must not be present in 95% of samples taken throughout any twelve month period |  |  |  |

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

**Table 6.1.23** STANDARD PARAMETERS AND VALUES FOR DRINKING-WATER QUALITY STANDARD VALUE FOR BIOLOGICAL ORGANISMS

|                | Constituents | Permissibe Limit |
|----------------|--------------|------------------|
| Total Count/mL |              | 10               |

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

<sup>(2)</sup> Annual Geometric Mean

<sup>(3)</sup> These are provisional guideline values and shall be reviewed yearly to determine the course of action required of the next step

Source: Department of Environment and Natural Resources Administrative Order 2013-13

**Table 6.1.24** STANDARD PARAMETERS AND VALUES FOR DRINKING-WATER QUALITY STANDARD VALUES FOR PHYSICAL AND CHEMICAL QUALITY: HEALTH SIGNIFICANCE

### Inorganic Constituents

| Constituents    | Maximum Level (mg/L) |
|-----------------|----------------------|
| Antimony        | 0.005                |
| Arsenic         | 0.01                 |
| Barium          | 0.7                  |
| Boron           | 0.3                  |
| Cadmium         | 0.003                |
| Chromium        | 0.05                 |
| Cyanide         | 0.07                 |
| Fluoride        | 1                    |
| Lead            | 0.01                 |
| Mercury (total) | 0.001                |
| Nitrate as NO3  | 50                   |
| Nitrate as NO2  | 3                    |
| Selenium        | 0.01                 |

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

## Organic Constituents (Pesticides)

| Constituents                      | Maximum Level (mg/L) |
|-----------------------------------|----------------------|
| Aldrin & Dieldrin                 | 0.03                 |
| Chlordane                         | 0.2                  |
| DDT                               | 2                    |
| Endrin                            | 0.2                  |
| Heptachlor and Heptachlor epoxide | 0.03                 |
| Lindane                           | 2                    |
| Methoxychlor                      | 20                   |
| Petroleum oils & grease           | nil                  |
| Toxyphane                         | 5                    |
| 2,4 - D                           | 30                   |
| 2,4,5 - T                         | 9                    |

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

**Table 6.1.25** STANDARD PARAMETERS AND VALUES FOR DRINKING-WATER QUALITY STANDARD VALUES FOR PHYSICAL AND CHEMICAL QUALITY: HEALTH SIGNIFICANCE

| Constituent or Characteristic                            | Maximum Level (mg/L) |
|----------------------------------------------------------|----------------------|
| Taste                                                    | Unobjectionable      |
| Odor                                                     | Unobjectionable      |
| Color                                                    | 5 TCU                |
| Turbidity                                                | 5NTU                 |
| Aluminum                                                 | 0.2                  |
| Chloride                                                 | 250                  |
| Copper                                                   | 1                    |
| Hardness                                                 | 300 (as CaCo3)*      |
| Hydrogen Sulfide                                         | 0.05                 |
| Iron                                                     | 1                    |
| Manganese                                                | 0.5                  |
| рН                                                       | 6.5-8.5              |
| Sodium                                                   | 200*                 |
| Sulfate                                                  | 250                  |
| Total Dissolved Solids                                   | 500                  |
| Zinc *Secondary standards: compliance with the standards | 5*                   |

<sup>\*</sup>Secondary standards: compliance with the standard and analysis are not obligatory

TCU True Color Unit NTU Nephelometric Turbidity Unit

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

**Table 6.1.26** STANDARD PARAMETERS AND VALUES FOR DRINKING-WATER QUALITY STANDARD VALUES FOR DISINFECTANTS AND DISINFECTANT BY-PRODUCTS

| Co | nstituents                       | Maximum Level (mg/L) |  |  |  |  |  |
|----|----------------------------------|----------------------|--|--|--|--|--|
| a. | Disinfectant Chlorine (residual) | 0.2-0.5              |  |  |  |  |  |
| b. | b. Disinfectant By-products      |                      |  |  |  |  |  |
|    | Bromate                          | 0.025                |  |  |  |  |  |
|    | Chlorite                         | 0.2                  |  |  |  |  |  |
|    | 2,4,6 tricholorophenol           | 0.2                  |  |  |  |  |  |
|    | Formaldehyde                     | 0.9                  |  |  |  |  |  |
|    | Phenolic substances              | 0.001                |  |  |  |  |  |
|    | Bromoform                        | 0.1                  |  |  |  |  |  |
|    | Dibromochloromethane             | 0.1                  |  |  |  |  |  |
|    | Bromodichloromethane             | 0.06                 |  |  |  |  |  |
|    | Chloroform                       | 0.2                  |  |  |  |  |  |

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

# **Table 6.1.27** STANDARD PARAMETERS AND VALUES FOR DRINKING-WATER QUALITY **CHEMICALS OF NO HEALTH SIGNIFICANCE AT CONCENTRATIONS NORMALLY FOUND IN DRINKING WATER**

| Asbestors | In consonance with the findings of WHO, the Department                                                     |
|-----------|------------------------------------------------------------------------------------------------------------|
| Silver    | of Health does not prescribe any standard values for these                                                 |
| Tin       | compounds since they are not hazardous to human health at concentrations normally found in drinking-water. |

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

**Table 6.1.28** STANDARD PARAMETERS AND VALUES FOR DRINKING-WATER QUALITY STANDARD VALUES FOR RADIOLOGICAL CONSTITUENTS

| Constituents         | Activity Level (Bq/L) |
|----------------------|-----------------------|
| gross alpha activity | 0.1                   |
| gross beta activity  | 1                     |

Source: Department of Environment and Natural Resources Administrative Order 26-A Series of 1994

**Table 6.1.29** VEHICLE EMISSION LIMITS FOR EURO 4/IV, AND IN-USE VEHICLE EMISSION STANDARDS

| Types of Vehicles                                                                      | Emission Limits/Standards                                                                                                                                                             |               |                                     |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|--|--|
|                                                                                        | Category/Cla                                                                                                                                                                          | ss of Vehicle | Reference Mass RW                   |  |  |
|                                                                                        | Category                                                                                                                                                                              | Class         | (kg)                                |  |  |
| 4) 11                                                                                  | M (1)                                                                                                                                                                                 | -             | all                                 |  |  |
| a.1) New passenger vehicles, M and light duty, N1 with Euro 2/Euro 3 engines           |                                                                                                                                                                                       | 1             | RW≤1,250                            |  |  |
| engines                                                                                | N1 (2)                                                                                                                                                                                | II            | 1,250 <rw≤1,700< td=""></rw≤1,700<> |  |  |
|                                                                                        |                                                                                                                                                                                       | III           | 1,700 <rw< td=""></rw<>             |  |  |
| a.2) New passenger vehicles, M and light duty, N1 with Euro 4 engines                  |                                                                                                                                                                                       | Euro          | 4                                   |  |  |
| b.1) New heavy duty vehicles with Euro II/Euro III engines                             | CO (g/                                                                                                                                                                                | kWh)          | HC (g/kWh)                          |  |  |
|                                                                                        | 2.45                                                                                                                                                                                  |               | 0.73                                |  |  |
| b.2) New heavy duty vehicles with Euro IV engines                                      | Euro IV                                                                                                                                                                               |               |                                     |  |  |
| c.1) New motorcycles, tricycles and mopeds with Euro 2 engines                         | Class (cc)                                                                                                                                                                            |               | CO (g/km)                           |  |  |
|                                                                                        | <150 cc. (1.3)                                                                                                                                                                        |               | 4.5 (5.0)                           |  |  |
|                                                                                        | ≥150 cc. (1.3)                                                                                                                                                                        |               | 4.5 (5.0)                           |  |  |
|                                                                                        | All (L4)                                                                                                                                                                              |               | 6.5                                 |  |  |
| c.2) New motorcycles, tricycles and mopeds with Euro 2 engines                         |                                                                                                                                                                                       | Euro          | 3                                   |  |  |
|                                                                                        | CO (% by vol.)<br>At idling                                                                                                                                                           |               |                                     |  |  |
| d) In-use, rebuilt and imported used passanger cars light duty and heavy duty vehicles | '0.25 [registered for the first time on or after July 1, 20 0.5 [registered for the first time after December 31, 20 3.5 [registered for the first time on or before Decemb 31, 2007] |               |                                     |  |  |
| f) In-use motorcycles, tricycles and mopeds                                            | 2.5 [registered for the first time on or after July 1, 2017]                                                                                                                          |               |                                     |  |  |
|                                                                                        | 3.5 [registered for the first time on or after Januay 1, 2012]                                                                                                                        |               |                                     |  |  |
|                                                                                        | 4.5 [registererd for the first time before January 1, 2012]                                                                                                                           |               |                                     |  |  |

Source: Department of Environment and Natural Resources Administrative Order No. 2015-04, effective July 1, 2015

| CO (g/km) |                      | HC + NOx | (g/km) |        | Particulate (PM) (g/km) |
|-----------|----------------------|----------|--------|--------|-------------------------|
| Petrol    | Petrol Diesel Petrol |          | Diesel | Petrol | Diesel                  |
| 2.0       | 0.9                  | 0.3      | 0.6    | -      | 0.05                    |
| 2.0       | 0.9                  | 0.3      | 0.6    | -      | 0.05                    |
| 3.0       | 1.2                  | 0.4      | 0.8    | -      | 0.10                    |
| 4.0       | 1.4                  | 0.5      | 1.0    | -      | 0.15                    |
|           |                      |          |        |        |                         |
|           | NOx (g/kWh)          |          |        |        | PM (g/kWh)              |
| 6.9       |                      |          | 0.14   |        |                         |

| HC(g/km)                                                                                                                                                                                         | NOx(g/km)                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.80 (1.1)                                                                                                                                                                                       | 0.20 (.29)                                                                                                                                                                                                                   |
| 0.70 (0.9)                                                                                                                                                                                       | 0.20 (.29)                                                                                                                                                                                                                   |
| 1.0                                                                                                                                                                                              | 0.39                                                                                                                                                                                                                         |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                              |
| HC(ppm)<br>At idling                                                                                                                                                                             | Light Absorption Coefficient, m-1<br>At free acceleration                                                                                                                                                                    |
| 100 [registered for the first ime on or after July 1, 2017]<br>250 [registered for the first time after December 31, 2007]<br>600 [registered for the first time on or before December 31, 2007] | <ul><li>1.0 [registered for the first ime on or after July 1, 2017]</li><li>2.0 [registered for the first time after December 31, 2015]</li><li>2.5 [registered for the first time on or before December 31, 2015]</li></ul> |
| 1,000 [registered for the first time on or after July 1, 2017]                                                                                                                                   | 20% smoke opacity                                                                                                                                                                                                            |
| 4,500 [registered for the first time on or after Januay 1, 2012]                                                                                                                                 | 30% smoke opacity                                                                                                                                                                                                            |

6,000 [registererd for the first time before January 1, 2012] 30% smoke opacity
Source: Department of Environment and Natural Resources Administrative Order No. 2015-04, effective July 1, 2015

**Table 6.1.30** WATER QUALITY GUIDELINES FOR PRIMARY PARAMETERS

| Unit      | Water Body Classification                  |                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|--------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | AA                                         | Α                                                                                                | В                                                                                                                                  | C                                                                                                                                                                                                                                                   | D                                                                                                                                                                                                                                                                                                        | SA                                                                                                                                                                                                                                                                                                                                                              | SB                                                                                                                                                                                                                                                                                                                                                                                                           | SC                                                                                                                                                                                                                                                                                                                                                                        | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/L      | 1                                          | 3                                                                                                | 5                                                                                                                                  | 7                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                       | n/a                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                                                                                                                                                                                                       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mg/L      | 250                                        | 250                                                                                              | 250                                                                                                                                | 350                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                                                                      | n/a                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                                                                                                                                                                                                       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TCU       | 5                                          | 50                                                                                               | 50                                                                                                                                 | 75                                                                                                                                                                                                                                                  | 150                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mg/L      | 5                                          | 5                                                                                                | 5                                                                                                                                  | 5                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MPN/100mL | <1.1                                       | <1.1                                                                                             | 100                                                                                                                                | 200                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                                                                      | <1.1                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                       | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mg/L      | 7                                          | 7                                                                                                | 7                                                                                                                                  | 7                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | 6.5-8.5                                    | 6.5-8.5                                                                                          | 6.5-8.5                                                                                                                            | 6.5-9.0                                                                                                                                                                                                                                             | 6.0-9.0                                                                                                                                                                                                                                                                                                  | 7.0-8.5                                                                                                                                                                                                                                                                                                                                                         | 7.0-8.5                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5-8.5                                                                                                                                                                                                                                                                                                                                                                   | 6.0-9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mg/L      | <0.003                                     | 0.5                                                                                              | 0.5                                                                                                                                | 0.5                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| °C        | 26-30                                      | 26-30                                                                                            | 26-30                                                                                                                              | 25-31                                                                                                                                                                                                                                               | 25-32                                                                                                                                                                                                                                                                                                    | 26-30                                                                                                                                                                                                                                                                                                                                                           | 26-30                                                                                                                                                                                                                                                                                                                                                                                                        | 25-31                                                                                                                                                                                                                                                                                                                                                                     | 25-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/L      | 25                                         | 50                                                                                               | 65                                                                                                                                 | 80                                                                                                                                                                                                                                                  | 110                                                                                                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                                        | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | mg/L mg/L TCU mg/L MPN/100mL mg/L  mg/L °C | MA       mg/L     1       mg/L     250       TCU     5       mg/L     5       MPN/100mL     <1.1 | MAA     A       mg/L     1     3       mg/L     250     250       TCU     5     50       mg/L     5     5       MPN/100mL     <1.1 | MAA         A         B           mg/L         1         3         5           mg/L         250         250         250           TCU         5         50         50           mg/L         5         5         5           MPN/100mL         <1.1 | MAA         A         B         C           mg/L         1         3         5         7           mg/L         250         250         250         350           TCU         5         50         50         75           mg/L         5         5         5         5           MPN/100mL         <1.1 | MAA         A         B         C         D           mg/L         1         3         5         7         15           mg/L         250         250         250         350         400           TCU         5         50         50         75         150           mg/L         5         5         5         5         2           MPN/100mL         <1.1 | MAA         A         B         C         D         SA           mg/L         1         3         5         7         15         n/a           mg/L         250         250         250         350         400         n/a           TCU         5         50         50         75         150         5           mg/L         5         5         5         2         6           MPN/100mL         <1.1 | MPN/100mL         7         7         15         n/a         n/a           mg/L         250         250         250         350         400         n/a         n/a           TCU         5         50         50         75         150         5         50           mg/L         5         5         5         2         6         6           MPN/100mL         <1.1 | MPN/100mL         <1.1         <1.1         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0         <1.0 |

MPN/100mL - Most Probable Number per 100 milliliter

n/a - Not Applicable

TCU - True Color Unit

Source: Department of Environment and Natural Resources Administrative Order No. 2016-08

**Table 6.1.31** WATER QUALITY GUIDELINES FOR SECONDARY PARAMETERS-INORGANICS

| Davamatav        | Water Body Classification |      |      |      |      |      |      |      |      |      |
|------------------|---------------------------|------|------|------|------|------|------|------|------|------|
| Parameter        | Unit                      | AA   | Α    | В    | C    | D    | SA   | SB   | SC   | SD   |
| Ammonia as NH₃-N | mg/L                      | 0.05 | 0.05 | 0.05 | 0.05 | 0.75 | 0.04 | 0.05 | 0.05 | 0.75 |
| Boron            | mg/L                      | 0.5  | 0.5  | 0.5  | 0.75 | 3    | 0.5  | 0.5  | 5    | 20   |
| Fluoride         | mg/L                      | 1    | 1    | 1    | 1    | 2    | 1.5  | 1.5  | 1.5  | 3    |
| Selenium         | mg/L                      | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.1  | 0.2  |
| Sulfate          | mg/L                      | 250  | 250  | 250  | 275  | 500  | 250  | 250  | 275  | 500  |

Source: Department of Environment and Natural Resources Administrative Order No. 2016-08

 $<sup>^{\</sup>mbox{\tiny (a)}}$  Samples shall be taken from 9:00 AM to 4:00 PM

<sup>(</sup>b) The natural background temperature as determined by EMB shall prevail if the temperature is lower or higher than the WQG; provided that the maximum increase in only up to 10 percent and that it will nto cause any risk to human health and the environment

**Table 6.1.32** WATER QUALITY GUIDELINES FOR SECONDARY PARAMETERS-METALS(C)

| Parameter                                                 | Unit | Unit Water Body Classification |       |       |       |       |       |       |       |       |
|-----------------------------------------------------------|------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                           |      | AA                             | Α     | В     | C     | D     | SA    | SB    | SC    | SD    |
| Arsenic                                                   | mg/L | 0.01                           | 0.01  | 0.01  | 0.02  | 0.04  | 0.01  | 0.01  | 0.02  | 0.04  |
| Barium                                                    | mg/L | 0.7                            | 0.7   | 0.7   | 3     | 4     | 0.1   | 0.7   | 1     | 4     |
| Cadmium                                                   | mg/L | 0.003                          | 0.003 | 0.003 | 0.005 | 0.01  | 0.003 | 0.003 | 0.005 | 0.01  |
| Chromium as<br>Hexavalent<br>Chromium (Cr <sup>6+</sup> ) | mg/L | 0.01                           | 0.01  | 0.01  | 0.01  | 0.02  | 0.05  | 0.05  | 0.05  | 0.1   |
| Copper as Dissolved<br>Copper                             | mg/L | 0.02                           | 0.02  | 0.02  | 0.02  | 0.04  | 0.02  | 0.02  | 0.02  | 0.04  |
| Iron                                                      | mg/L | 1                              | 1     | 1     | 1.5   | 7.5   | 1.5   | 1.5   | 1.5   | 7.5   |
| Lead                                                      | mg/L | 0.01                           | 0.01  | 0.01  | 0.05  | 0.1   | 0.01  | 0.01  | 0.05  | 0.1   |
| Manganese                                                 | mg/L | 0.2                            | 0.2   | 0.2   | 0.2   | 2     | 0.4   | 0.4   | 0.4   | 4     |
| Mercury                                                   | mg/L | 0.001                          | 0.001 | 0.001 | 0.002 | 0.004 | 0.001 | 0.001 | 0.002 | 0.004 |
| Nickel                                                    | mg/L | 0.02                           | 0.02  | 0.04  | 0.2   | 1     | 0.02  | 0.04  | 0.06  | 0.3   |
| Zinc<br>Notes:                                            | mg/L | 2                              | 2     | 2     | 2     | 4     | 0.04  | 0.05  | 0.8   | 1.5   |

<sup>(</sup>c)Unless otherwise specified, the above parameters are expressed as total metals. Source: Department of Environment and Natural Resources Administrative Order No. 2016-08

**Table 6.1.33** WATER QUALITY GUIDELINES FOR SECONDARY PARAMETERS-ORGANICS

| Parameter                                | Unit | Water Body Classification |        |        |      |     |        |        |      |     |
|------------------------------------------|------|---------------------------|--------|--------|------|-----|--------|--------|------|-----|
|                                          |      | AA                        | Α      | В      | С    | D   | SA     | SB     | sc   | SD  |
| Benzo(a)pyrene                           | μg/L | 0.7                       | 0.7    | 0.7    | 1.5  | 3   | 0.7    | 0.7    | 1.5  | 3   |
| BTEX                                     |      |                           |        |        |      |     |        |        |      |     |
| Benzene                                  | mg/L | 0.01                      | 0.01   | 0.01   | 0.05 | 0.5 | 0.01   | 0.01   | 0.05 | 0.5 |
| Toleune                                  | mg/L | 0.7                       | 0.7    | 1      | 4    | 5   | 1      | 1      | 4    | 5   |
| Ethylbenzene                             | mg/L | 0.3                       | 0.3    | 0.3    | 1.5  | 2   | 0.2    | 0.2    | 1.5  | 2   |
| Xlenes                                   | mg/L | 0.5                       | 0.5    | 0.5    | 1.5  | 1.8 | 0.5    | 0.5    | 1.5  | 1.8 |
| Cyanide as Free<br>Cyanide               | mg/L | 0.07                      | 0.07   | 0.07   | 0.1  | 0.2 | 0.02   | 0.02   | 0.1  | 0.2 |
| Organophosphate as Malathion             | mg/L | 1                         | 1      | 1      | 3    | 6   | 1      | 1      | 3    | 6   |
| Oil and Grease                           | mg/L | <1                        | 1      | 1      | 2    | 5   | 1      | 2      | 3    | 5   |
| Polychlorinated<br>Biphenyls(d)          | μg/L | <0.1                      | <0.1   | 0.2    | 0.5  | 1   | 0.3    | 0.3    | 0.5  | 1   |
| Phenol & Phenolic<br>Substances(e)       | mg/L | <0.001                    | <0.001 | <0.001 | 0.05 | 0.5 | <0.001 | <0.001 | 0.05 | 0.5 |
| Surfactants (MBAS)                       | mg/L | <0.025                    | 0.2    | 0.3    | 1.5  | 3   | 0.3    | 0.3    | 1.5  | 3   |
| Trichloroethylene                        | mg/L | 0.07                      | 0.07   | 0.07   | 0.9  | 2   | 0.07   | 0.07   | 0.9  | 2   |
| Total<br>Organochlorine<br>Pesticides(f) | μg/L | n/a                       | n/a    | 50     | 50   | 50  | 50     | 50     | 50   | 50  |
| Aldrin                                   | μg/L | 0.03                      | 0.03   | n/a    | n/a  | n/a | n/a    | n/a    | n/a  | n/a |
| Chlordane                                | μg/L | 0.2                       | 0.2    | n/a    | n/a  | n/a | n/a    | n/a    | n/a  | n/a |
| Dichlorodiphenyltri-<br>chloroethane     | μg/L | 1                         | 1      | n/a    | n/a  | n/a | n/a    | n/a    | n/a  | n/a |
| Dieldrin                                 | μg/L | 0.03                      | 0.03   | n/a    | n/a  | n/a | n/a    | n/a    | n/a  | n/a |

| Endrin              | μg/L | 0.6  | 0.6  | n/a |
|---------------------|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| Heptachlor          | μg/L | 0.03 | 0.03 | n/a |
| Lindane             | μg/L | 2    | 2    | n/a |
| Methoxychlor        | μg/L | 50   | 50   | n/a |
| Toxaphene<br>Notes: | μg/L | 4    | 4    | n/a |

CAS-Chemical Abstracts Service

IUPAC-International Union of Pure and Applied Chemistry

MBAS - Methylene Blue Active Substances

μg/L - microgram per liter

(d) Polychlorinated Biphenyls (PCBs) include the nine Aroclors and 19 individuals PCB congeners described belo

| Compound                      | CAS#       | IUPAC# |
|-------------------------------|------------|--------|
| Aroclor 1016                  | 12674-11-2 |        |
| Aroclor 1221                  | 11104-28-2 |        |
| Aroclor 1232                  | 11141-16-5 |        |
| Aroclor 1242                  | 53469-21-9 |        |
| Aroclor 1248                  | 12672-29-6 |        |
| Aroclor 1254                  | 11097-69-1 |        |
| Aroclor 1260                  | 11096-82-5 |        |
| Aroclor 1262                  | 37324-23-5 |        |
| Aroclor 1268                  | 11100-14-4 |        |
| 2-Chlorobiphenyl              | 2051-60-7  | 1      |
| 2,3-Dichlorobiphenyl          | 16605-91-7 | 5      |
| 2,2',5-Trichlorobiphenyl      | 37680-65-2 | 18     |
| 2,4',5-Trichlorobiphenyl      | 16606-02-3 | 31     |
| 2,2',3,5'-Tetrachlorobiphenyl | 41464-39-5 | 44     |

| dividuals FCB congeners described belo   |            |        |
|------------------------------------------|------------|--------|
| Compound                                 | CAS#       | IUPAC# |
| 2,2',5,5'-Tetrachlorobiphenyl            | 35693-99-3 | 52     |
| 2,3',4,4'-Tetrachlorobiphenyl            | 32598-10-0 | 66     |
| 2,2',3,4,5'-Pentachlorobiphenyl          | 38380-02-8 | 87     |
| 2,2',4,4,5'-Pentachlorobiphenyl          | 37680-73-2 | 101    |
| 2,3,3',4',6-Pentachlorobiphenyl          | 38380-03-9 | 110    |
| 2,2',3,4,4',5'-Hexachlorobiphenyl        | 35065-28-2 | 138    |
| 2,2',3,4,5,5'-Hexachlorobiphenyl         | 52712-04-6 | 141    |
| 2,2',3,5,5',6-Hexachlorobiphenyl         | 52663-63-5 | 151    |
| 2,2',4,4',5,5'-Hexachlorobiphenyl        | 35065-27-1 | 153    |
| 2,2',3,3',4,4',5,5'-Heptachlorobiphenyl  | 35065-30-6 | 170    |
| 2,2',3,4,4',5,5'-Heptachlorobiphenyl     | 35065-29-3 | 180    |
| 2,2',3,4,4',5',6-Heptachlorobiphenyl     | 52663-69-1 | 183    |
| 2,2',3,4',5,5',6-Heptachlorobiphenyl     | 52663-68-0 | 187    |
| 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl | 40186-72-9 | 206    |

<sup>(</sup>e) Phenols include 2-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol.

Source: Department of Environment and Natural Resources Administrative Order No. 2016-08

**Table 6.1.34 GROUNDWATER QUALITY GUIDELINES** 

| Intended Beneficial Use                        | Groundwater Quality Guidelines                                              |
|------------------------------------------------|-----------------------------------------------------------------------------|
| Source of Potable Water and Other Domestic Use | Adopt Class A WQG (except BOD and Dissolved Oxygen)                         |
| Bathing and Other Primary Contact Recreation   | Adopt Class B WQG (except BOD and Dissolved Oxygen)                         |
| Irrigation, Fish Culture, Livestock Watering   | Adopt Class C WQG (except BOD, Dissolved Oxygen and Total Suspended Solids) |

<sup>(</sup>f) When monitoring for Class AA and A waters, the individual organochlorine pesticides shall be monitored. For Class B, C, D, SA, SB, SC and SDD; Total Organochlorine Pesticides shall be monitored, which refers to the organochlorine pesticides listed in Table 0-6 plus Benzene Hexachloride  $(BHC) \ (\overline{\alpha_i}\beta_i\delta_i\gamma_j), \ 4,4' \ Dichlorodiphenyldichloroethane \ (DDD), \ 4,4' \ Dichlorodiphenyldichloroethylene \ (DDE), \ Endosulfan \ (I,II, \ and \ sulfate).$ 

Table 6.2 LIST AND DESCRIPTION OF MULTILATERAL ENVIRONMENTAL AGREEMENTS AND OTHER GLOBAL ENVIRONMENTAL CONVENTIONS

| Multilateral<br>Environmental<br>Agreements/ Global<br>Environmental<br>Conventions                                | Basic Objective                                                                                                                                                                                                                                                                                                                                                                                                                        | Date of Signature,<br>Ratification/Approval/<br>Accession/Adoption, and<br>Entry into Force                         |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| United Nations<br>Environment Assembly<br>(UNEA)                                                                   | Currently, the UNEA serves as the world's highest leading environmental authority for the global environmental agenda. During the first UNEA, Ministers and Heads of Delegation commit to ensure the full integration of the environmental dimension, especially throughout the sustainable                                                                                                                                            | 23-27 June 2014<br>Second assembly:                                                                                 |
|                                                                                                                    | development agenda; promote sustainable consumption and production patterns; prevent, combat and eradicate the illegal trade in wildlife and wildlife products; address climate change; halt biodiversity loss and combat desertification; and ensure the full implementation of Multilateral Environmental Agreements and other international and regional environmental commitments.*                                                | 04-06 December 2016                                                                                                 |
| Putrajaya Declaration of<br>Regional Cooperation<br>for the Sustainable<br>Development of the Seas of<br>East Asia | The Putrajaya Declaration of Regional Cooperation for the Sustainable Development of the Seas of East Asia represents a paradigm shift in management approach that focuses on the interactions between environment and development and addresses issues and impacts across sectoral, administrative, and legal boundaries that are constraints and bottlenecks for sustainable development in the East Asian Seas Region. <sup>2</sup> |                                                                                                                     |
| Convention on Nuclear<br>Safety                                                                                    | The Convention on Nuclear Safety is an incentive-based instrument that commits States operating nuclear power plants to establish and maintain a regulatory framework to govern the safety of nuclear installations. <sup>3</sup>                                                                                                                                                                                                      |                                                                                                                     |
| Minamata Convention                                                                                                | The Minamata Convention on Mercury is a global treaty to protect human health and the environment from the adverse effects of mercury.*                                                                                                                                                                                                                                                                                                |                                                                                                                     |
| Convention on the<br>Prevention of Marine<br>Pollution by Dumping<br>Wastes and Other Matter, or                   | The Convention on the Prevention of Marine Pollution by Dumping Wastes and Other Matter contributes to the international control and prevention of marine pollution by prohibiting the dumping of certain hazardous materials. <sup>4</sup>                                                                                                                                                                                            | Date of accession: 09 May 2012  Date of entry into force:                                                           |
| London Convention                                                                                                  | nazardous materiais.                                                                                                                                                                                                                                                                                                                                                                                                                   | 08 June 2012                                                                                                        |
| ASEAN Cooperation Plan on Transboundary Pollution                                                                  | The ASEAN Cooperation Plan on Transboundary Pollution aims to<br>prevent and monitor transboundary haze pollution as a result of land<br>and/or forest fires which should be mitigated, through concerted                                                                                                                                                                                                                              | Date of ratification/ approval:<br>01 February 2010                                                                 |
|                                                                                                                    | national efforts and intensified regional and international co-<br>operation. <sup>5</sup>                                                                                                                                                                                                                                                                                                                                             | Date of deposit of instrument<br>of ratification/ approval with<br>the Secretary General of<br>ASEAN: 04 March 2010 |
| Convention on Cluster<br>Munitions                                                                                 | The Convention on Cluster Munitions is an international treaty that addresses the humanitarian consequences and unacceptable harm to civilians caused by cluster munitions, through a categorical prohibition and a framework for action. <sup>6</sup>                                                                                                                                                                                 |                                                                                                                     |
| International Treaty on<br>Plant Genetic Resources for<br>Food and Agriculture                                     | The International Treaty on Plant Genetic Resources for Food and Agriculture seeks to ensure that plant genetic resources of economic and/or social interest, particularly for agriculture, will be explored, preserved, evaluated and made available for plant breeding and scientific purposes. <sup>7</sup>                                                                                                                         | Date of accession:<br>28 September 2006                                                                             |
| Rotterdam                                                                                                          | The objective of this Convention is to promote shared responsibility and cooperative efforts among Parties in the international trade of certain hazardous chemicals in order to protect human health and                                                                                                                                                                                                                              | Date of ratification: 31 July 2006                                                                                  |
|                                                                                                                    | the environment from potential harm and to contribute to their environmentally sound use, by facilitating information exchange about their characteristics, by providing for a national decision-making process on their import and export and by disseminating these decisions to Parties.*                                                                                                                                           | Date of entry into force:<br>29 October 2006                                                                        |

# Table 6.2 LIST AND DESCRIPTION OF MULTILATERAL ENVIRONMENTAL AGREEMENTS AND OTHER GLOBAL ENVIRONMENTAL CONVENTIONS

| Multilateral<br>Environmental<br>Agreements/ Global<br>Environmental<br>Conventions     | Basic Objective                                                                                                                                                                                                                                                  | Date of Signature,<br>Ratification/Approval/<br>Accession/Adoption, and<br>Entry into Force |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Amendment to the<br>Montreal Protocol on<br>Substances that Deplete<br>the Ozone Layer  | The Montreal Protocol on Substances that Deplete the Ozone Layer was designed to reduce the production and consumption of ozone depleting substances in order to reduce their abundance in the atmosphere, and thereby protect the earth's fragile ozone layer.* |                                                                                             |
| International Convention<br>for the Prevention of<br>Pollution from Ships, or<br>MARPOL | The International Convention for the Prevention of Pollution from Ships is the main international convention covering prevention of pollution of the marine environment by ships from operational or accidental causes. <sup>8</sup>                             | Date of deposit of instrument:<br>15 June 2001<br>Date of entry into force:                 |
|                                                                                         |                                                                                                                                                                                                                                                                  | 15 September 2001                                                                           |
| Stockholm Convention                                                                    | The objective of the Stockholm Convention is to protect human health and the environment from persistent organic pollutants.*                                                                                                                                    | Date of adoption:<br>23 May 2001                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                  | Date of ratification:<br>27 February 2004                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                  | Dateof entry into force:<br>27 May 2004                                                     |
| Cartagena Protocol on<br>Biosafety                                                      | The Cartagena Protocol on Biosafety to the Convention on Biological Diversity is an international treaty governing the movements of living modified organisms resulting from modern biotechnology                                                                | "Date of signature:<br>25 May 2000                                                          |
|                                                                                         | from one country to another. It was adopted on 29 January 2000 as a                                                                                                                                                                                              | Date of ratification:<br>05 October 2006                                                    |
|                                                                                         | and entered into force on 11 September 2003.                                                                                                                                                                                                                     | Date of entry into force:<br>03 January 2007"                                               |
| United Nations Forum on Forests (UNFF)                                                  | The main objective of the UNFF is to promote the management, conservation and sustainable development of all types of forests and strengthen long-term political commitment.*                                                                                    | Year of establishment:<br>2000                                                              |
| Hanoi Plan of Action                                                                    | The Hanoi Action Plan aims to strengthen ASEAN's cooperation and joint approaches in addressing issues and problems affecting trade in the region's food, agriculture and forestry products including environment and labour issues. <sup>10</sup>               | ·                                                                                           |
| Kyoto Protocol                                                                          | The objective of the Kyoto Protocol is to reduce global greenhouse gas emissions by at least 5% in comparison to the base year of 1990, during the commitment period from 2008 to 2012.*                                                                         |                                                                                             |
|                                                                                         | the communent period from 2000 to 2012.                                                                                                                                                                                                                          | Date of signature:<br>April 1998                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                  | Date of ratification:<br>20 November 2003                                                   |
|                                                                                         |                                                                                                                                                                                                                                                                  | Date of entry into force:<br>16 February 2005                                               |
|                                                                                         |                                                                                                                                                                                                                                                                  | First Commitment Period: 2008-2012                                                          |
|                                                                                         |                                                                                                                                                                                                                                                                  | Second commitment period: 2013-2020                                                         |

Table 6.2 LIST AND DESCRIPTION OF MULTILATERAL ENVIRONMENTAL AGREEMENTS AND OTHER GLOBAL ENVIRONMENTAL CONVENTIONS

| Multilateral<br>Environmental<br>Agreements/ Global<br>Environmental<br>Conventions                            | Basic Objective                                                                                                                                                                                                                                                                                                                                                                                             | Date of Signature,<br>Ratification/Approval/<br>Accession/Adoption, and<br>Entry into Force |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, or Assistance Convention | The Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency sets out an international framework for cooperation among States Parties and with the International Atomic Energy Agency to facilitate prompt assistance and support in the event of nuclear accidents or radiological emergencies. <sup>11</sup>                                                                  | Date of accession:<br>05 May 1997<br>Date of entry into force:<br>05 June 1997              |
| Convention on Early<br>Notification of a Nuclear<br>Accident, or Notification<br>Convention                    | The Convention on Early Notification of a Nuclear Accident establishes a notification system for nuclear accidents which have the potential for international transboundary release that could be of radiological safety significance for another State. <sup>12</sup>                                                                                                                                      | Date of deposit: 05 May 1997  Date of entry into force: 05 June 1997                        |
| Comprehensive Test Ban<br>Treaty                                                                               | The Comprehensive Test Ban Treaty aims to achieve the discontinuance of all test explosions of nuclear weapons for all time, to continue negotiations to this end, and to put an end to the contamination of man's environment by radioactive substances. <sup>13</sup>                                                                                                                                     | Date of signature:<br>24 September 1996<br>Date of ratification:<br>23 February 2001        |
| Convention to Combat<br>Desertification                                                                        | The Convention to Combat Desertification is the sole legally binding international agreement linking environment and development to sustainable land management. CCD addresses specifically the arid, semi-arid and dry sub-humid areas, known as the drylands, where some of the most vulnerable ecosystems and peoples can be found. <sup>14</sup>                                                        | Date of signature: 08 December 1994  Date of ratification: 10 February 2000                 |
| Convention on Wetlands of<br>International Importance,<br>or Ramsar Convention                                 | The Ramsar Convention on Wetlands of International Importance is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources. <sup>15</sup>                                                                                                                                                 | Date of entry into force:<br>08 November 1994                                               |
| Convention on the<br>Conservation of Migratory<br>Species of Wild Animals, or<br>Bonn Convention               | The Convention on the Conservation of Migratory Species of Wild Animals provides a global platform for the conservation and sustainable use of migratory animals and their habitats. CMS brings together the States through which migratory animals pass, the Range States, and lays the legal foundation for internationally coordinated conservation measures throughout a migratory range. <sup>16</sup> | Date of ratification:<br>01 February 1994                                                   |
| Basel Convention                                                                                               | Below are the objectives of the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal:*                                                                                                                                                                                                                                                                         | Date of ratification:<br>21 October 1993                                                    |
|                                                                                                                | -Effective implementation of parties' obligations on transboundary movements of hazardous and other wastes - Strengthening the environmentally sound management of hazardous and other wastes - Strengthening the environmentally sound management of hazardous and other wastesx                                                                                                                           | Date of entry into force:<br>19 January 1994                                                |
| Chemical Weapons<br>Convention                                                                                 | The Chemical Weapons Convention aims to eliminate an entire category of weapons of mass destruction by prohibiting the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by States Parties. States Parties, in turn,                                                                                                                                        | Date of signature: 13 January 1993  Date of ratification:                                   |
|                                                                                                                | must take the steps necessary to enforce that prohibition in respect of persons (natural or legal) within their jurisdiction. <sup>17</sup>                                                                                                                                                                                                                                                                 | 11 December 1996  Date of entry into force: 29 April 1997                                   |
| Convention on Biological<br>Diversity                                                                          | The Convention on Biological Diversity entered into force on 29 December 1993. It has three main objectives: (1) the conservation of biological diversity; (2) the sustainable use of the components of biological diversity; and (3) the fair and equitable sharing of the benefits arising out of the utilization of genetic resources. <sup>18</sup>                                                     | Date of signature: 12 June 1992  Date of ratification: 08 October 1993                      |

Table 6.2 LIST AND DESCRIPTION OF MULTILATERAL ENVIRONMENTAL AGREEMENTS AND OTHER GLOBAL ENVIRONMENTAL CONVENTIONS

| Multilateral<br>Environmental<br>Agreements/ Global<br>Environmental<br>Conventions                                                                                    | Basic Objective                                                                                                                                                                                                                                             | Date of Signature,<br>Ratification/Approval/<br>Accession/Adoption, and<br>Entry into Force |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| United Nations Framework<br>Convention on Climate<br>Change (UNFCC)                                                                                                    | The ultimate objective of the Convention is to stabilize greenhouse gas concentrations "at a level that would prevent dangerous anthropogenic (human induced) interference with the climate system." It states that                                         | Date of adoption:<br>09 May 1992                                                            |
| Change (ON CC)                                                                                                                                                         | "such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened, and to enable economic development to                                           | Date of entry into force:<br>31 October 1994                                                |
|                                                                                                                                                                        | proceed in a sustainable manner.*                                                                                                                                                                                                                           | Date of ratification:<br>02 August 1994                                                     |
| Vienna Convention for the<br>Protection of the Ozone<br>Layer                                                                                                          | The Convention aims for Parties to promote cooperation via systematic observations, research and information exchange on the effects of human activities on the ozone layer and to adopt legislative or                                                     |                                                                                             |
| ,                                                                                                                                                                      | administrative measures to deal with activities likely to have adverse effects on the ozone layer. Legally binding reduction goals for the use of Chlorofluorocarbons (CFCs) for the Vienna Convention are laid out in the accompanying Montreal Protocol.* | Date of ratification:<br>19 July 1991                                                       |
| Kuala Lumpur Accord<br>on Environment and<br>Development                                                                                                               | The Kuala Lumpur Accord on Environment and Development aims to initiate efforts leading towards concrete steps pertaining to environmental                                                                                                                  | Year of adoption:<br>1985                                                                   |
| ·                                                                                                                                                                      | management and natural resource management, and to initiate efforts enabling the inclusion of environmental factors into economic calculations and thus providing a better base for international economic cooperation. <sup>19</sup>                       |                                                                                             |
| Montreal Protocol                                                                                                                                                      | The Montreal Protocol on Substances that Deplete the Ozone Layer was designed to reduce the production and consumption of ozone depleting substances in order to reduce their abundance in the                                                              | Date of adoption:<br>16 September 1987                                                      |
|                                                                                                                                                                        | atmosphere, and thereby protect the earth's fragile ozone Layer.*                                                                                                                                                                                           | Date of ratification:<br>17 July 1991                                                       |
| International Tropical<br>Timber Organization (ITTO)                                                                                                                   |                                                                                                                                                                                                                                                             |                                                                                             |
| United Nations Convention on the Law of the Sea                                                                                                                        | The United Nations Convention on the Law of the Sea is the most comprehensive attempt at creating a unified regime for governance of the rights of nations with respect to the world's oceans. The treaty                                                   | 9                                                                                           |
|                                                                                                                                                                        | addresses a number of topics including navigational rights, economic rights, pollution of the seas, conservation of marine life, scientific exploration, and piracy.                                                                                        |                                                                                             |
| Convention on the<br>International Trade in<br>Endangered Species of Wild                                                                                              | tion on the The Convention on International Trade in Endangered Species of Wild tional Trade in Fauna and Flora is an international agreement between governments                                                                                           |                                                                                             |
| Flora and Fauna                                                                                                                                                        | animals and plants does not threaten their survival. <sup>21</sup>                                                                                                                                                                                          | Date of entry into force:<br>16 November 1981                                               |
| Convention on Certain<br>Conventional Weapons                                                                                                                          | The purpose of the Convention on Certain Conventional Weapons is to ban or restrict the use of specific types of weapons that are considered to cause unnecessary or unjustifiable suffering to combatants or to                                            | Date of signature:<br>15 May 1981                                                           |
|                                                                                                                                                                        | affect civilians indiscriminately. <sup>22</sup>                                                                                                                                                                                                            | Date of ratification:<br>15 July 1996                                                       |
| Protocol for the Prohibition<br>of the Use in War of<br>Asphyxiating, Poisonous<br>or other Gases, and of<br>Bacteriological Methods of<br>Warfare, or Geneva Protocol | TheProtocolfortheProhibitionoftheUseinWarofAsphyxiating,Poisonous or other Gases, and of Bacteriological Methods of Warfare prohibits the use in war of asphyxiating, poisonous, or other gases, and of bacteriological methods of warfare. <sup>23</sup>   | Date of accession:<br>08 June 1973                                                          |

## Table 6.2 LIST AND DESCRIPTION OF MULTILATERAL ENVIRONMENTAL AGREEMENTS AND OTHER GLOBAL ENVIRONMENTAL CONVENTIONS

| Basic Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date of Signature,<br>Ratification/Approval/<br>Accession/Adoption,<br>and Entry into Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Biological Weapons Convention was the first multilateral disarmament treaty to ban the production and use of an entire category of weapons. It entered into force on 26 March 1975. <sup>24</sup>                                                                                                                                                                                                                                                                                                                                                 | Date of ratification:<br>21 June 1972<br>Date of deposition:<br>23 May 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The Food and Agriculture Organization of the United Nations created the Committee on Forestry (COFO) as one of its governing bodies to fulfill its goal of providing food security for everyone. It gathers 138 countries in biennial session at the FAO Headquarters in Rome, Italy. It brings together senior government officials and heads of different forest services to review international forestry problems, identify emerging policy and technical issues, provide possible solutions, and advise FAO on appropriate action.*              | First session:<br>May 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The Convention on Civil Liability for Nuclear Damage provides for absolute liability for nuclear damage; that is, liability for nuclear damage is incurred regardless of whether the operator was or was not at fault or responsible for the damage. <sup>25</sup>                                                                                                                                                                                                                                                                                    | Date of signature: 21 May 1963  Date of ratification: 15 November 1965  Date of entry into force: 12 November 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The International Hydrographic Organization (IHO) is an intergovernmental consultative and technical organization established to support safety of navigation and the protection of the marine environment.  It aims to coordinate activities of national hydrographic offices to ensure uniform nautical charts and documents, promote adoption of reliable and efficient methods of carrying out and exploiting hydrographic surveys and develop the sciences in the field of hydrography and the techniques employed in descriptive oceanography.* | Year of establishment:<br>1921<br>Year of enter into force:<br>1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Biological Weapons Convention was the first multilateral disarmament treaty to ban the production and use of an entire category of weapons. It entered into force on 26 March 1975. <sup>24</sup> The Food and Agriculture Organization of the United Nations created the Committee on Forestry (COFO) as one of its governing bodies to fulfill its goal of providing food security for everyone. It gathers 138 countries in biennial session at the FAO Headquarters in Rome, Italy. It brings together senior government officials and heads of different forest services to review international forestry problems, identify emerging policy and technical issues, provide possible solutions, and advise FAO on appropriate action.*  The Convention on Civil Liability for Nuclear Damage provides for absolute liability for nuclear damage; that is, liability for nuclear damage is incurred regardless of whether the operator was or was not at fault or responsible for the damage. <sup>25</sup> The International Hydrographic Organization (IHO) is an intergovernmental consultative and technical organization established to support safety of navigation and the protection of the marine environment.  It aims to coordinate activities of national hydrographic offices to ensure uniform nautical charts and documents, promote adoption of reliable and efficient methods of carrying out and exploiting hydrographic surveys and develop the sciences in the field of hydrography and the |

### Sources:

- \*Department of Environment and Natural Resources
- <sup>2</sup> http://www.pemsea.org/sites/default/files/putrajaya-declaration.pdf
- <sup>3</sup> http://www.nti.org/treaties-and-regimes/convention-nuclear-safety/
- 4 http://www.imo.org/About/Conventions/ListOfConventions/Pages/Convention-on-the-Prevention-of-Marine-Pollution-by-Dumping-of-Wastes-and-Other-Matter.aspx
- <sup>5</sup> http://haze.asean.org/?wpfb\_dl=32
- 6 http://www.clusterconvention.org/
- <sup>7</sup> http://www.fao.org/waicent/faoinfo/agricult/cgrfa/IU.htm
- 8 http://www.imo.org/About/Conventions/ListOfConventions/Pages/International-Convention-for-the-Prevention-of-Pollution-from-Ships-(MARPOL).aspx
- 9 http://bch.cbd.int/protocol/background/
- 10 http://www.asean.org/news/item/hanoi-plan-of-action
- 11 http://www.iaea.org/publications/documents/treaties/convention-assistance-case-nuclear-accident-or-radiological-emergency
- 12 http://www.iaea.org/publications/documents/treaties/convention-early-notification-nuclear-accident
- <sup>13</sup> http://disarmament.un.org/treaties/t/test\_ban/text
- <sup>14</sup> http://www.unccd.int/en/about-the-convention/Pages/About-the-Convention.aspx
- 15 http://www.ramsar.org/
- 16 http://www.cms.int/en/legalinstrument/cms
- 17 http://www.opcw.org/chemical-weapons-convention/
- 18 http://www.cbd.int/intro/default.shtml
- 19 http://environment.asean.org/the-kuala-lumpur-accord-on-environment-and-development-issued-by-the-asean-ministers-for-the-environment-at-thefourth-asean-ministers-for-the-environment-meeting/
- <sup>21</sup> http://cites.org/eng/disc/what.php
- <sup>22</sup> http://www.unog.ch/80256EE600585943/(httpPages)/4F0DEF093B4860B4C1257180004B1B30
- <sup>23</sup> http://www.un.org/disarmament/WMD/Bio/pdf/Status\_Protocol.pdf
- <sup>24</sup> http://www.unog.ch/80256EE600585943/(httpPages)/04FBBDD6315AC720C1257180004B1B2F
- <sup>25</sup> http://www.iaea.org/publications/documents/conventions/vienna-convention-on-civil-liability-for-nuclear-damage

# **Core Set (Tier 1) of Environment Statistics**

Tier 1 is the Core Set of Environment Statistics which represents a broad consensus of opinion on the pertinence and feasibility of these statistics; as such, it is intended to foster collection, coordination and harmonization of environment statistics at the national, regional and international levels. The objective of the Core Set is to serve as an agreed, limited set of environment statistics that are of high priority and relevance to most countries.

| Topic                                                         | Statistics and Related<br>Information***                                                                                  | Category of measurement | Potential<br>aggregations<br>and scales                                              | Methodological guidance                                                                                                                                                                             |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component 1: E                                                | nvironmental Conditions and Qual                                                                                          | ity                     |                                                                                      |                                                                                                                                                                                                     |
| Sub-compo                                                     | nent 1.1: Physical Conditions                                                                                             |                         |                                                                                      |                                                                                                                                                                                                     |
|                                                               | a. Temperature                                                                                                            |                         | National                                                                             | <ul> <li>World Meteorological</li> </ul>                                                                                                                                                            |
|                                                               | 1. Monthly average                                                                                                        | Degrees                 | Subnational                                                                          | Organization (WMO) <ul><li>Intergovernmental</li></ul>                                                                                                                                              |
| Topic 1.1.1:                                                  | <ol><li>Minimum monthly<br/>average</li></ol>                                                                             | Degrees                 |                                                                                      | Panel on Climate Change (IPCC)                                                                                                                                                                      |
| Atmosphere, climate and                                       | <ol><li>Maximum monthly<br/>average</li></ol>                                                                             | Degrees                 |                                                                                      | <ul> <li>National Oceanic<br/>and Atmospheric</li> </ul>                                                                                                                                            |
| weather                                                       | b. Precipitation (also in 2.6.1.a)                                                                                        |                         |                                                                                      | Administration<br>(NOAA)/National                                                                                                                                                                   |
|                                                               | 1. Annual average                                                                                                         | Height                  |                                                                                      | Aeronautics and Space                                                                                                                                                                               |
|                                                               | <ol><li>Long-term annual<br/>average</li></ol>                                                                            | Height                  |                                                                                      | Administration (NASA)                                                                                                                                                                               |
| Topic 1.1.2:                                                  | d. Watersheds                                                                                                             |                         | By location                                                                          | United Nations Statistics                                                                                                                                                                           |
| Hydrographical characteristics                                | <ol> <li>Description of main watersheds</li> </ol>                                                                        | Area, description       | <ul><li>By watershed/<br/>river basin</li><li>National</li><li>Subnational</li></ul> | <ul> <li>Division (UNSD):</li> <li>International<br/>Recommendations for<br/>Water Statistics (IRWS)</li> <li>UN-Water</li> </ul>                                                                   |
| Topic 1.1.3:<br>Geological and<br>geographical<br>information | <ul> <li>Geological, geographical<br/>and geomorphological<br/>conditions of terrestrial areas<br/>and islands</li> </ul> |                         | National     By location                                                             | <ul> <li>UNSD: Demographic<br/>Yearbook</li> <li>Food and Agriculture<br/>Organization of the<br/>United Nations (FAO)</li> </ul>                                                                   |
|                                                               | 1. Area of country or region                                                                                              | Area, location          |                                                                                      | <ul> <li>Center of International<br/>Earth Science</li> </ul>                                                                                                                                       |
|                                                               | <ul> <li>b. Coastal Waters (including<br/>area of coral reefs and<br/>mangroves)</li> </ul>                               | Area, description       |                                                                                      | Information Network<br>(CIESIN)                                                                                                                                                                     |
|                                                               | c. Length of marine coastline                                                                                             | Length                  |                                                                                      |                                                                                                                                                                                                     |
|                                                               | d. Coastal area                                                                                                           | Area                    |                                                                                      |                                                                                                                                                                                                     |
| Topic 1.1.4: Soil                                             | a. Soil characterization                                                                                                  | Area                    | • By location                                                                        | <ul> <li>FAO and the</li> </ul>                                                                                                                                                                     |
| characteristics                                               | 1. Area by soil types                                                                                                     |                         | <ul><li>By soil type</li><li>National</li></ul>                                      | International Institute for Applied Systems                                                                                                                                                         |
|                                                               | b. Soil degradation                                                                                                       | Area                    | Subnational                                                                          | Analysis (IIASA)                                                                                                                                                                                    |
|                                                               | Area affected by soil erosion                                                                                             | Area                    |                                                                                      | Harmonized World Soil Database International Soil                                                                                                                                                   |
|                                                               | Area affected by desertification                                                                                          |                         |                                                                                      | Reference and Information Centre (ISRIC) World Data Centre for Soils  United Nations Convention to Combat Desertification (UNCCD)  FAO Global Assessment of Human-induced Soil Degradation (GLASOD) |

### Information\*\*\* measurement and scales guidance Sub-component 1.2: Land Cover, Ecosystems and Biodiversity **FAO Land Cover** Topic 1.2.1: Land Area under land cover Area By location cover categories By type of land Classification cover (e.r., artificial System surfaces, including System of urban and associated Environmentalareas; herbaceous Economic crops; woody crops; Accounting (SEEA) multiple or layered Central Framework crops; grassland; (2012) land cover categories tree-covered areas; mangroves; shrub-European covered areas; shrubs Environment and/or herbaceous Agency (EEA) vegetation, aquatic or regularly flooded; sparsely natural vegetated areas; terrestrial barren land; permanent snow and glaciers; inland water bodies; and coastal water bodies and intertidal areas) National Subnational Topic 1.2.2: By ecosystem (e.g., a. General ecosystem Ecosystems and characteristics, extent and forest, cultivated, biodiversity dryland, coastal, pattern marine, urban, polar, Area of ecosystems Area inland water, island, b. **Biodiversity** mountain) Known flora and fauna Number By status category species (e.g., extinct, extinct in the wild, Protected areas and species b. threatened, near Protected terrestrial and Number, area threatened, least marine area (also in 1.2.3.a) concern) By class (e.g., mammals, fishes, birds, reptiles National Subnational By location

**Category of** 

**Potential aggregations** 

Methodological

**Statistics and Related** 

Topic

| Topic                                 | Statistics and Related<br>Information***                                                                                                                                                                                                                                                                                                                                                                                                                        | Category of measurement                                                                  | Potential<br>aggregations and<br>scales                                                                                                                                                 | Methodological<br>guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Sub-comp                            | onent.2: Land Cover, Ecosystems ar                                                                                                                                                                                                                                                                                                                                                                                                                              | nd Biodiversity                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Topic 1.2.3:<br>Forests               | a. Forest area b. Total                                                                                                                                                                                                                                                                                                                                                                                                                                         | Area                                                                                     | <ul> <li>By forest type</li> <li>National</li> <li>Subnational</li> <li>By dominant tree species</li> <li>By ownership category</li> </ul>                                              | <ul> <li>FAO Global         Forest Resources         Assessment (FRA)</li> <li>UN Forum on         Forests (UNFF)         Monitoring,         Assessment and         Reporting (MAR)</li> <li>UNSD: MDG         Indicator 7.1         Metadata</li> <li>Montreal Process         (Working Group         on Criteria and         Indicators for the         Conservation         and Sustainable         Management of         Temperate and         Boreal Forests)</li> <li>State of Europe's         Forests (Forest         Europe/UNECE-FAO         Forestry and timber         Section)</li> </ul> |
| Sub-compor                            | nent 1.3: Environmental Quality                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Topic 1.3.1: Air quality              | <ol> <li>a. Local air quality</li> <li>1. Concentration level of particulate matter (PM<sub>10</sub>)</li> <li>2. Concentration level of particulate matter (PM<sub>2.5</sub>)</li> <li>3. Concentration level of tropospheric ozone (O<sub>3</sub>)</li> <li>4. Concentration level of carbon monoxide (CO)</li> <li>5. Concentration level of Sulphur dioxide (SO<sub>2</sub>)</li> <li>6. Concentration level of nitrogen oxides (NO<sub>x</sub>)</li> </ol> | Concentration  Concentration  Concentration  Concentration  Concentration  Concentration | By point measurement     Subnational     Daily maximum     Monthly maximum and average     Yearly maximum and average                                                                   | <ul> <li>WHO Air Quality Guidelines - Global Update 2005, Particulate matter, ozone, nitrogen dioxide and sulfur dioxide</li> <li>WHO Air Quality Guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide and sulfur dioxide, Global Update 2005, Summary of risk assessment</li> <li>UNECE Standard Statistical Classification of</li> </ul>                                                                                                                                                                                                                                     |
| Topic 1.3.2:<br>Freshwater<br>quality | <ul> <li>a. Nutrients and chlorophyll</li> <li>1. Concentration level of nitrogen</li> <li>2. Concentration level of phosphorous</li> <li>b. Organic matter</li> <li>1. Biochemical oxygen demand (BOD)</li> </ul>                                                                                                                                                                                                                                              | Concentration  Concentration  Concentration                                              | <ul> <li>By water body</li> <li>By watershed/<br/>riverbasin</li> <li>By surface or<br/>groundwater</li> <li>By point<br/>measurement</li> <li>By type of water<br/>resource</li> </ul> | <ul> <li>Ambient Air Quality (1990)</li> <li>UNECE Standard Statistical Classification of Freshwater Quality for the Maintenance of Aquatic Life (1992)</li> <li>UN Environment Programme (UNEP) Global Environment Monitoring System - Water (GEMS-Water)</li> </ul>                                                                                                                                                                                                                                                                                                                                   |

| Торіс                                   | Statistics and Related<br>Information***                                                                                                                                                                                                                                                    | Category of measurement                           | Potential<br>aggregations and<br>scales                                                                                                                                                                      | Methodological<br>guidance                                                                                                                                                                                    |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | c. Pathogens                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                              | • WHO                                                                                                                                                                                                         |
|                                         | <ol> <li>Concentration levels of faecal coliforms</li> </ol>                                                                                                                                                                                                                                | Concentration                                     |                                                                                                                                                                                                              |                                                                                                                                                                                                               |
| Topic 1.3.3:<br>Marine water<br>quality | <ul> <li>a. Nutrients and chlorophyll</li> <li>1. Concentration level of nitrogen</li> <li>2. Concentration level of phosphorous</li> <li>b. Organic matter</li> <li>1. Biochemical oxygen demand (BOD)</li> <li>c. Coral bleaching</li> <li>1. Area affected by coral bleaching</li> </ul> | Concentration  Concentration  Concentration  Area | <ul> <li>By coastal zone, delta, estuary or other local marine environment</li> <li>Subnational</li> <li>National</li> <li>Supranational</li> <li>By point measurement</li> <li>By water resource</li> </ul> | <ul> <li>UNECE Standard<br/>Statistical<br/>Classification of<br/>Marine Water<br/>Quality (1992)</li> <li>NOAA/NASA</li> <li>UNEP Regional Seas<br/>Programme</li> <li>Stockholm<br/>Convention</li> </ul>   |
| •                                       | vironmental Resources and Their                                                                                                                                                                                                                                                             | Use                                               |                                                                                                                                                                                                              |                                                                                                                                                                                                               |
| Sub-compon                              | ent 2.1: Mineral Resources                                                                                                                                                                                                                                                                  |                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                               |
|                                         | a. Mineral resources                                                                                                                                                                                                                                                                        |                                                   | By mineral     (e.g., metal ores)                                                                                                                                                                            | <ul> <li>United Nations</li> <li>Framework</li> </ul>                                                                                                                                                         |
|                                         | <ol> <li>Stocks of commercially recoverable resources</li> </ol>                                                                                                                                                                                                                            | Mass, volume                                      | including precious<br>metals, and rare                                                                                                                                                                       | Classification for<br>Energy and Mineral                                                                                                                                                                      |
|                                         | 2. Extraction                                                                                                                                                                                                                                                                               | Mass, volume                                      | earths, coal, oil, gas, stone, sand and clay, chemical and fertilizer minerals, salt, gemstones, abrasive minerals, graphite, asphalt, natural solid bitumen, quartz, mica)  National  Subnational           | Resources (UNFC 2009)  SEEA Central Framework (2012) asset and physical flow accounts  International Standard Industrial Classification for All Economic Activities (ISIC) Rev. 4, Section B, Divisions 05-09 |
| Sub-compon                              | ent 2.2: Energy Resources                                                                                                                                                                                                                                                                   |                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                                               |
|                                         | Mineral resources     Stocks of commercially recoverable resources                                                                                                                                                                                                                          | Mass, volume                                      | By resource (e.g.,<br>natural gas, crude<br>oil and natural gas<br>liquids, oil shale,                                                                                                                       | <ul> <li>SEEA Central<br/>Framework (2012)<br/>asset and physical<br/>flow accounts</li> </ul>                                                                                                                |
|                                         | 5. Extraction                                                                                                                                                                                                                                                                               | Mass, volume                                      | and extra heavy oil (includes oil extracted from oil sands), coal and lignite, peat, non- metallic minerals except for coal or peat, uranium and thorium ores) National                                      | <ul> <li>UNFC 2009</li> <li>ISIC Rev. 4, Section<br/>B, Divisions 05-09</li> <li>HS 2012, Section V,<br/>Chapter 27</li> </ul>                                                                                |

| Topic                                                             | Statistics and Related<br>Information***                                                                                                                                 | Category of measurement                                                                      | Potential<br>aggregations and<br>scales                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methodological<br>guidance                                                                                 |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Topic 2.2.2:<br>Production, trade<br>and consumption<br>of energy | <ol> <li>a. Production of energy</li> <li>1. Total production</li> <li>2. Production from non-renewable sources</li> <li>3. Production from renewable sources</li> </ol> | Energy unit, mass,<br>volume<br>Energy unit, mass,<br>volume<br>Energy unit, mass,<br>volume | <ul> <li>By non-renewable resource (e.g., petroleum, natural gas, coal, nuclear fuels, non-sustainable firewood, waste, other non-renewables)</li> <li>By renewable resource (e.g., solar, hydroelectric, geothermal, tidal action, wave action, marine, wind, biomass)</li> <li>National</li> <li>Subnational</li> </ul>                                                                                                                                                                                             | UNSD: IRES IEA Energy Statistics Manual Joint Wood Energy Enquiry (UNECE- FAO Forestry and Timber Section) |
|                                                                   | <ul><li>4. Primary energy production</li><li>5. Secondary energy production</li></ul>                                                                                    | Energy unit, mass,<br>volume<br>Energy unit, mass,<br>volume                                 | <ul> <li>By primary         energy resource         (e.g., petroleum,         natural gas, coal,         hydroenergy,         geothermal,         nuclear fuels, cane         products, other         primary)</li> <li>By secondary         energy product         (e.g., electricity,         liquefied petroleum         gas, gasoline/         alcohol, kerosene,         diesel oil, fuel oil,         coke, charcoal,         gases, other         secondary)</li> <li>National</li> <li>Subnational</li> </ul> |                                                                                                            |
|                                                                   | b. Total energy supply                                                                                                                                                   | Energy unit, mass, volume                                                                    | By energy product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |
|                                                                   | c. Final consumption of energy                                                                                                                                           | Energy unit, mass,<br>volume                                                                 | <ul> <li>By households</li> <li>By ISIC economic activity</li> <li>By tourists</li> <li>National</li> <li>Subnational</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |

| Topic                              |    | atistics and Related<br>formation***            | Category of<br>measurement |   | and scales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methodological<br>guidance                                                                                                                                                                                                                                                   |
|------------------------------------|----|-------------------------------------------------|----------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic 2.3.1: Land use              | a. | Area under land use categories                  | Area                       |   | By type of land use (e.g., agriculture; forestry; land used for aquaculture; use of built-up and related areas; land used for maintenance and restoration of environmental functions; other uses of land not elsewhere classified; land not in use; iland waters used for maintenance and restoration of environmental functions; other uses of inland waters not elsewhere classified; inland water not in use; coastal waters (including area of coral reefs and mangroves); Exclusive Economic Zone (EEZ)) National Subnational | FAO<br>UNECE Standard<br>Classification of<br>Land Use (1989)<br>SEEA Central<br>Framework (2012)<br>Annex 1                                                                                                                                                                 |
| Topic 2.3.2: Use of forest land    |    | Use of forest land  1. Area deforested          |                            | • | By forest type<br>National<br>Subnational<br>By dominant tree species                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FAO FRA UNFF MAR UNSD: MDG Indicator 7.7 Metadata Montreal Process (Working Group on Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests) State of Europe's Forests (Forest Europe/UNECE-FAO Forestry and Timber Section |
| -                                  |    | .5: Biological Resources                        |                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CEEA C                                                                                                                                                                                                                                                                       |
| Topic<br>2.5.1:Timber<br>resources | a. | Timber resources  1. Stocks of timber resources | Volume                     |   | By type (e.g., natural or<br>planted)<br>National<br>Subnational                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>SEEA Central Framework (2012) FAO FRA State of Europe's Forests (Forest Europe/UNECE-FAO Forestry and Timber Section) UNECE/FAO Joint                                                                                                                                    |

Category of

**Potential aggregations** 

Methodological

**Statistics and Related** 

Working Party on Forest Statistics, Economics and Management ISIC Rev. 4, Section A, Division 02 FAOSTAT database

| Торіс                        | Statistics and Related Information***                                                                                                                                                                                 | Category of measurement     | Potential aggregations and scales                                                                                 | Methodological<br>guidance                                                                                                                                                                                                                                                      |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic 2.5.2:                 | a. Fish capture production                                                                                                                                                                                            | Mass                        | By relevant freshwater                                                                                            | FAO International                                                                                                                                                                                                                                                               |
| Aquatic resources            | b. Aquaculture production                                                                                                                                                                                             | Mass                        | and marine species National Subnational                                                                           | Standard Statistical Classification of Aquatic Animals and Plants (ISSCAAP)  ISIC Rev. 4, Section A, Division 03  The United Nations Convention on the Law of the Sea (UNCLOS)  UNSD: MDG Indicator 7.4 Metadata  HS 2012, Section I, Chapter 03  SEEA Central Framework (2012) |
| Topic 2.5.3: Crops           | <ul> <li>Main annual and perennial crops</li> </ul>                                                                                                                                                                   |                             | By type (e.g., natural or planted)                                                                                | <ul> <li>FAO Indicative<br/>Crop Classification</li> </ul>                                                                                                                                                                                                                      |
|                              | 1. Area planted                                                                                                                                                                                                       | Area                        | <ul><li>National</li><li>Subnational</li></ul>                                                                    | (for 2010 round of agricultural                                                                                                                                                                                                                                                 |
|                              | 2. Area harvested                                                                                                                                                                                                     | Area                        | Jubilational                                                                                                      | censuses)                                                                                                                                                                                                                                                                       |
|                              | 3. Amount produced                                                                                                                                                                                                    | Mass                        |                                                                                                                   | <ul> <li>FAO/WHO         Specifications for     </li> </ul>                                                                                                                                                                                                                     |
|                              | b. Amount used of:                                                                                                                                                                                                    |                             | By type of fertilizer                                                                                             | Pesticides (2010)                                                                                                                                                                                                                                                               |
|                              | <ul> <li>1. Natural fertilizers (e.g., manure, compost, lime)</li> <li>(also in 3.4.1.a)</li> <li>Area, mass, volume</li> <li>By type of pesticide</li> <li>By crop</li> <li>National</li> <li>Subnational</li> </ul> | <ul> <li>By crop</li> </ul> | <ul> <li>FAO Specifications<br/>for Commonly Used<br/>Fertilizers (2009)</li> <li>ISIC Rev. 4, Section</li> </ul> |                                                                                                                                                                                                                                                                                 |
|                              | 2. Chemical fertilizers (also in 3.4.1.a)                                                                                                                                                                             | Area, mass, volume          |                                                                                                                   | <ul><li>A, Division 1</li><li>FAOSTAT database</li></ul>                                                                                                                                                                                                                        |
|                              | 3. Pesticides (also in 3.4.1.b)                                                                                                                                                                                       | Area, mass, volume          |                                                                                                                   | HS 2012, Section II                                                                                                                                                                                                                                                             |
| Topic 2.5.4:<br>Livestock    | a. Livestock                                                                                                                                                                                                          |                             | <ul><li>By type of animal</li><li>National</li></ul>                                                              | <ul><li>FAOSTAT database</li><li>ISIC Rev. 4, Section</li></ul>                                                                                                                                                                                                                 |
| LIVESTOCK                    | 1. Number of live animal                                                                                                                                                                                              |                             | • Subnational                                                                                                     | A, Division 01  HS 2012, Section I, Chapter 01                                                                                                                                                                                                                                  |
| Sub-compone                  | ent 2.6: Water Resources                                                                                                                                                                                              |                             |                                                                                                                   |                                                                                                                                                                                                                                                                                 |
| Topic 2.6.1: Water resources | a. Sub-component 2.6: Water<br>Resources                                                                                                                                                                              |                             | National     Subnational                                                                                          | <ul><li>UNSD: IRWS</li><li>UNECE Standard</li></ul>                                                                                                                                                                                                                             |
|                              | 1. Precipitation (also in 1.1.1.b)                                                                                                                                                                                    | Volume                      | By territory of origin and destination                                                                            | Statistical<br>Classification of<br>Water Use (1989)                                                                                                                                                                                                                            |
|                              | Inflow from neighboring territories                                                                                                                                                                                   | Volume                      |                                                                                                                   | UNSD: MDG     Indicator 7.5                                                                                                                                                                                                                                                     |
|                              | b. Outflow of water from inland water resources                                                                                                                                                                       |                             |                                                                                                                   | <ul><li>Metadata</li><li>FAO AQUASTAT</li><li>SEEA Central</li></ul>                                                                                                                                                                                                            |
|                              | 1. Evapotranspiration                                                                                                                                                                                                 | Volume                      |                                                                                                                   | Framework (2012) asset accounts SEEA Water UNSD: Environment Statistics Section - Water Questionnaire                                                                                                                                                                           |

| Topic                                                                | Statistics and Related<br>Information***                                                                                                                                                        | Category of measurement | Potential aggregations<br>and scales                                                                              | Methodological<br>guidance                                                                                                                                                         |                                                                                                                                                                |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic 2.6.2:<br>Abstraction, use<br>and returns of<br>water          | <ul> <li>a. Total water abstraction</li> <li>b. Water abstraction from surface water</li> <li>c. Water abstraction from groundwater</li> <li>1. From renewable groundwater resources</li> </ul> | Volume<br>Volume        | <ul><li>By type of source</li><li>National</li><li>Subnational</li></ul>                                          | <ul> <li>National</li> <li>Subnational</li> <li>Subnational</li> <li>Classification         Water Use (1)</li> <li>FAO AQUAS'</li> <li>SEEA Centra</li> </ul>                      | <ul> <li>UNECE Standard<br/>Statistical<br/>Classification of<br/>Water Use (1989)</li> <li>FAO AQUASTAT</li> <li>SEEA Central<br/>Framework (2012)</li> </ul> |
| Component 3: Re                                                      | From non-renewable groundwater resources  siduals                                                                                                                                               | Volume                  |                                                                                                                   | <ul> <li>SEEA Water</li> <li>UNSD: Environment<br/>Statistics Section -<br/>Water Questionnaire</li> </ul>                                                                         |                                                                                                                                                                |
| -                                                                    | ent 3.1: Emissions to Air                                                                                                                                                                       |                         |                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                |
| Topic 3.1.1:<br>Emissions of<br>greenhouse                           | <ul> <li>Total emissions of direct<br/>greenhouse gases (GHGs),<br/>by gas:</li> </ul>                                                                                                          |                         | <ul><li>By ISIC economic activity</li><li>By tourists</li><li>National</li></ul>                                  | Database • UN Framework                                                                                                                                                            |                                                                                                                                                                |
| gases                                                                | 1. Carbon dioxide (CO <sub>2</sub> )                                                                                                                                                            | Mass                    | <ul><li>Subnational</li><li>By IPCC source</li></ul>                                                              | Convention on<br>Climate Change                                                                                                                                                    |                                                                                                                                                                |
|                                                                      | 2. Methane (CH <sub>4</sub> )                                                                                                                                                                   | Mass                    | categories                                                                                                        | (UNFCCC) Reporting                                                                                                                                                                 |                                                                                                                                                                |
|                                                                      | 3. Nitrous oxide (N₂O)                                                                                                                                                                          | Mass                    |                                                                                                                   | <ul> <li>Guidelines</li> <li>UNECE Standard         Statistical         Classification of         Ambient Air Quality     </li> </ul>                                              |                                                                                                                                                                |
|                                                                      | <ul> <li>Total emissions of indirect<br/>greenhouse gases (GHGs),<br/>by gas:</li> </ul>                                                                                                        |                         |                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                |
|                                                                      | 1. Sulphur dioxide (SO2)                                                                                                                                                                        | Mass                    |                                                                                                                   | (1990) • UNSD: MDG Indicator                                                                                                                                                       |                                                                                                                                                                |
|                                                                      | 2. Nitrogen oxides (NOX)                                                                                                                                                                        | Mass                    |                                                                                                                   | 7.2 Metadata • WHO                                                                                                                                                                 |                                                                                                                                                                |
| Sub-compone                                                          | ent 3.2: Generation and Manageme                                                                                                                                                                | ent of Wastewater       |                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                |
| Topic 3.2.1:<br>Generation and<br>pollutant content<br>of wastewater | a. Volume of wastewater generated                                                                                                                                                               | Volume                  | <ul><li>By ISIC economic activity</li><li>By tourists</li><li>National</li><li>Subnational</li></ul>              | <ul> <li>UNSD: IRWS</li> <li>ISIC Rev. 4, Section E,<br/>Division 35-37</li> <li>SEEA Water</li> <li>UNSD: Environment<br/>Statistics Section -<br/>Water Questionnaire</li> </ul> |                                                                                                                                                                |
| Topic 3.2.2:<br>Collection and                                       | a. Volume of wastewater collected                                                                                                                                                               | Volume                  | <ul><li>National</li><li>Subnational</li></ul>                                                                    | <ul><li>UNSD: IRWS</li><li>ISIC Rev. 4, Section E,</li></ul>                                                                                                                       |                                                                                                                                                                |
| treatment of<br>wastewater                                           | tment of b. Volume of wastewater                                                                                                                                                                | Volume                  | <ul> <li>By treatment type (e.g., primary, secondary, tertiary)</li> <li>National</li> <li>Subnational</li> </ul> | <ul> <li>Division 35 and 36</li> <li>UNSD: Environment<br/>Statistics Section -<br/>Water Questionnaire</li> </ul>                                                                 |                                                                                                                                                                |
| Topic 3.2.3:                                                         | a. Watershed discharge                                                                                                                                                                          |                         | By treatment type (e.g.,                                                                                          | • UNSD: IRWS                                                                                                                                                                       |                                                                                                                                                                |
| Discharge of<br>wastewater to<br>the environment                     | <ol> <li>Total volume of<br/>wastewater discharged<br/>to the environment after<br/>treatment</li> </ol>                                                                                        | Volume                  | tertiary)                                                                                                         | <ul> <li>ISIC Rev. 4, Section E,         Division 35 and 36     </li> <li>UNSD: Environment         Statistics Section -         Water Questionnaire     </li> </ul>               |                                                                                                                                                                |
|                                                                      | <ol> <li>Total volume of<br/>wastewater discharged to<br/>the environment without<br/>treatment</li> </ol>                                                                                      | Volume                  |                                                                                                                   | water Questionnaire                                                                                                                                                                |                                                                                                                                                                |

| Торіс                                  | Statistics and Related<br>Information***                                                      | Category of measurement | Potential aggregations and scales                                                                                                                                      | Methodological<br>guidance                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-compone                            | nt 3.3: Generation and Manageme                                                               | ent of Waste            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Topic 3.3.1:<br>Generation of<br>waste | a. Amount of waste generated by source                                                        | Mass                    | <ul><li>By ISIC economic activity</li><li>By households</li><li>By tourists</li><li>National</li><li>Subnational</li></ul>                                             | <ul> <li>European         Commission:         European List of         Waste, pursuant to         European Waste         Framework Directive     </li> <li>Eurostat:</li> </ul>                                                                                                                                                                                                                                         |
|                                        | b. Amount of hazardous waste generated                                                        | Mass                    | <ul> <li>By ISIC economic activity</li> <li>National</li> <li>Subnational</li> </ul>                                                                                   | Environmental Data Centre on Waste  Eurostat: European Waste Classification for Statistics (EWC- Stat), version 4 (Waste categories)  Basel Convention: Waste categories and hazardous characteristics  Eurostat: Manual on Waste Statistics  Eurostat: Guidance on classification of waste according to EWC-Stat categories  SEEA Central Framework (2012)  UNSD: Environment Statistics Section - Waste Questionnaire |
| Topic 3.3.2:<br>Management of          | a. Municipal waste                                                                            |                         | By type of treatment and disposal (e.g.,                                                                                                                               | Eurostat:     Environmental Data                                                                                                                                                                                                                                                                                                                                                                                        |
| waste                                  | <ol> <li>Total municipal waste<br/>collected</li> </ol>                                       | Mass                    | reuse, recycling,                                                                                                                                                      | Centre on Waste • Eurostat metadata:                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | <ol><li>Amount of municipal<br/>waste treated by type of<br/>treatment and disposal</li></ol> | Mass                    | composting, incineration, landfilling, other)  By type of waste, when possible  National  Subnational                                                                  | Organisation for<br>Economic Co-<br>operation and                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | <ol> <li>Number of municipal<br/>waste treatment and<br/>disposal facilities</li> </ol>       | Number                  |                                                                                                                                                                        | Development (OECD)/<br>Eurostat definition of<br>municipal waste                                                                                                                                                                                                                                                                                                                                                        |
|                                        | b. Hazardous waste                                                                            |                         |                                                                                                                                                                        | <ul> <li>UNSD: Environment<br/>Statistics Section -</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |
|                                        | <ol> <li>Total hazardous waste collected</li> </ol>                                           | Mass                    |                                                                                                                                                                        | <ul><li>Waste Questionnaire</li><li>Basel Convention:</li></ul>                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 2. Amount of municipal waste treatment and disposal facilities                                | Mass                    |                                                                                                                                                                        | Waste categories and hazardous characteristics • Eurostat: EWC-Stat,                                                                                                                                                                                                                                                                                                                                                    |
|                                        | <ol> <li>Number of municipal<br/>waste treatment and<br/>disposal facilities</li> </ol>       | Number                  |                                                                                                                                                                        | version 4 (Waste categories)  • European                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | c. Amount of recycled waste                                                                   | Mass                    | <ul> <li>By specific waste streams (e.g., e-waste, packaging waste, end of life vehicles)</li> <li>By waste category</li> <li>National</li> <li>Subnational</li> </ul> | Commission: European Waste Framework Directive (Waste treatment operations) • Eurostat: Manual on Waste Statistics • Eurostat: Guidance on classification of waste according to EWC-Stat categories • Rotterdam Convention                                                                                                                                                                                              |

### Information\*\*\* and scales measurement **Component 4: Extreme Events and Disasters** Sub-component 4.1: Natural Extreme Events and Disasters Topic 4.1.1: Occurrence of natural By event Centre for Research on National the Epidemiology of Occurrence of natural extreme events and Subnational **Disasters Emergency** extreme events and disasters disasters **Events Database (CRED** 1. Type of natural Description EM-DAT) extreme event and **UN Economic** disaster (geophysical, Commission for Latin meteorological, America and the hydrological, Caribbean (UNECLAC) climatological, biological) Handbook for Estimating 2. Location Location the Socio-economic and **Environmental Effects of** Disasters The United Nations Office for Disaster Risk Reduction (UNISDR) Topic 4.1.2: Impact People affected by natural By event Centre for Research on of natural extreme extreme events and National the Epidemiology of events and disasters disasters Subnational **Disasters Emergency Events Database (CRED** 1. Number of people killed Number EM-DAT) **Economic losses due to** Currency By event **UN Economic** natural extreme events By ISIC economic Commission for Latin activity and disasters (e.g., damage America and the to buildings, transportation National Caribbean (UNECLAC) networks, loss of revenue Subnational Handbook for Estimating for businesses, utility By direct and indirect the Socio-economic and disruption) damage **Environmental Effects of** Disasters The United Nations Office for Disaster Risk Reduction (UNISDR) **Component 5: Human Settlements and Environmental Health Sub-component 5.1: Human Settlements** Population using an Number Urban UNSD: MDG Indicator 7.8 improved drinking water Rural and 7.9 Metadata source National **UN-Water** Subnational **UNSD: Environment** Population using an Number Statistics Section - Water improved sanitation and Waste Ouestionnaire facility WHO/United Nations Population served by Number Children's Fund (UNICEF) municipal waste collection Joint Monitoring Programme for Water Supply and Sanitation **UNSD: IRWS** Population connected to Number By treatment type wastewater treatment ISIC Rev. 4, Section E, (e.g., primary, secondary, tertiary) Division 35-37 National **UNSD: Environment** Subnational Statistics Section - Water Questionnaire Population supplied by Number National water supple industry Subnational Number of private and Topic 5.1.5: Number By type of engine or **UN Habitat** Environmental public vehicles type of fuel • WHO concerns specific to • UNEP Urban

**Category of** 

**Potential aggregations** 

Methodological guidance

**Statistics and Related** 

Topic

urban settlements

**Environment Unit** 

| Торіс                                                     | Statistics and Related<br>Information*** | Category of measurement | Potential aggregations and scales                                                                                                                                                 | Methodological guidance |
|-----------------------------------------------------------|------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Sub-compone                                               | ent 5.2: Environmental Health            |                         |                                                                                                                                                                                   |                         |
| Topic 5.2.2: Water-<br>related diseases<br>and conditions | a. Water-related diseases and conditions |                         | <ul> <li>By disease or condition</li> <li>National</li> <li>Subnational</li> <li>Urban</li> <li>Rural</li> <li>By gender</li> <li>By age group</li> <li>By time period</li> </ul> | • WHO                   |
|                                                           | 1. Incidence                             | Number                  |                                                                                                                                                                                   |                         |
|                                                           | 2. Prevalence                            | Number                  |                                                                                                                                                                                   |                         |
|                                                           | 3. Mortality                             | Number                  |                                                                                                                                                                                   |                         |
| Topic 5.2.3:                                              | a. Vector-borne diseases                 |                         | <ul> <li>By disease or condition</li> <li>National</li> <li>Subnational</li> <li>Urban</li> <li>Rural</li> <li>By gender</li> <li>By age group</li> <li>By time period</li> </ul> | • WHO                   |
| Vector-borne<br>diseases                                  | 1. Incidence                             | Number                  |                                                                                                                                                                                   |                         |
|                                                           | 2. Prevalence                            | Number                  |                                                                                                                                                                                   |                         |
|                                                           | 3. Mortality                             | Number                  |                                                                                                                                                                                   |                         |
| Component 6: En                                           | vironmental Protection, Manager          | ment and Engage         | •                                                                                                                                                                                 |                         |
| Sub-compone                                               | ent 6.1: Environmental Protection a      | and Resource Man        | agement Expenditure                                                                                                                                                               |                         |

| Sub-component 6.1: Environmental Protection and Resource Management Expenditure      |                                                                                                                                                                                                                                      |                        |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Topic 6.1.1: Government environmental protection and resource management expenditure | <ul> <li>a. Government environmental protection and resource management expenditure</li> <li>1. Annual government environmental protection expenditure</li> </ul>                                                                    | Currency               | activity By type of expenditure: current, investment By ministry National | <ul> <li>Eurostat-SERIEE         Environmental Protection         Expenditure Accounts         Compilation Guide (2002)</li> <li>Eurostat-Environmental         Expenditure Statistics.         General Government and         Specialised Procedures Data         Collection Handbook (2007)</li> <li>Classification of         Environmental Activities         (CEA) SEEA Central         Framework (2012) Annex 1</li> </ul> |  |
| Topic 6.2.2:<br>Environmental<br>regulation and<br>instruments                       | <ul> <li>a. Direct regulation</li> <li>1. List of regulated pollutants and description (e.g., by year of adoption and maximum allowable levels)</li> </ul>                                                                           | Description,<br>number | air, land, soil, oceans)  By ISIC economic activity                       |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Topic 6.2.3: Participation in MEAs and environmental conventions                     | <ul> <li>a. Participation in MEAs and other global environmental conventions</li> <li>1. List and description         <ul> <li>(e.g., country's year of participation) of MEAS and other global environmental</li> </ul> </li> </ul> | Description,<br>number |                                                                           | MEA Secretariats                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

<sup>\*\*\*</sup> As of 2020, statistics/indicators in blue semi-bold text are available in this publication

conventions

Note: Gray cells are empty

## **Tier 2 Statistics on 2020 RCES**

Tier 2 includes environment statistics which are of priority and relevance to most countries but need more significant investment in time, resources or methodological development, so countries are recommended to consider producing them in the medium-term.

| Topic                                                             | Statistics and<br>Related<br>Information***                          | Category of measurement | Potential aggregations and scales                                                                                                                                                                                                                                                  | Methodological guidance                                                                                                                                                                 |
|-------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tier 2                                                            |                                                                      |                         |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Component 1: Environn                                             | nental Conditions and                                                | Quality                 |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Sub-component 1.1:                                                | Physical Conditions                                                  |                         |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Topic 1.1.2:<br>Hydrographical<br>characteristics                 | <ul><li>a. Rivers and streams</li><li>1. Length</li></ul>            | Length                  | <ul><li>By location</li><li>By watershed/river basin</li><li>National</li><li>Subnational</li></ul>                                                                                                                                                                                | <ul> <li>United Nations</li> <li>Statistics Division</li> <li>(UNSD): International</li> <li>Recommendations for Water</li> <li>Statistics (IRWS)</li> <li>UN-Water</li> </ul>          |
|                                                                   |                                                                      |                         | • Subilational                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |
| Topic 1.3.2: Freshwater quality                                   | <ul> <li>a. Physical and<br/>chemical<br/>characteristics</li> </ul> |                         | <ul><li>By water body</li><li>By watershed/river basin</li><li>By surface or</li></ul>                                                                                                                                                                                             | <ul> <li>UNECE Standard         Statistical Classification         of Freshwater Quality         for the Maintenance of         Aquatic Life (1992)</li> <li>UNEP GEMS-Water</li> </ul> |
|                                                                   | <ol> <li>pH/acidity/<br/>alkalinity</li> </ol>                       | Level                   | <ul><li>groundwater</li><li>By point measurement</li><li>By type of water</li></ul>                                                                                                                                                                                                |                                                                                                                                                                                         |
|                                                                   | 2. Temperature                                                       | Degrees                 | resource                                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |
|                                                                   | <ol><li>Dissolved<br/>Oxygen (DO)</li></ol>                          | Concentration           |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Component 2: Environn                                             | nental Resources and tl                                              | heir Use                |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Sub-component 2.1:                                                | Mineral Resources                                                    |                         |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Topic 2.1.2:<br>Production and trade of<br>minerals               | a. Production of minerals                                            | Mass, volume            | <ul> <li>By mineral (e.g., metal ores including precious metals, and rare earths, coal, oil, gas, stone, sand and clay, chemical and fertilizer minerals, salt, gemstones, abrasive minerals, graphite, asphalt, natural solid bitumen, quartz, mica)</li> <li>National</li> </ul> | Harmonized Commodity<br>Description and Coding<br>Systems (HS) 2012,<br>Section V, Chapters 25<br>and 26, and Section VI<br>Chapter 28                                                  |
| Component 4: Extreme                                              | <b>Events and Disasters</b>                                          |                         |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Sub-component 4.1:                                                | Natural Extreme Events                                               | and Disasters           |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Topic 4.1.2: Impact of<br>natural extreme events<br>and disasters | a. People affected<br>by natural<br>extreme events<br>and disasters  |                         | <ul><li>By event</li><li>National</li><li>Subnational</li></ul>                                                                                                                                                                                                                    | <ul> <li>Centre for Research on<br/>the Epidemiology of<br/>Disasters Emergency<br/>Events Database (CRED<br/>EM-DAT)</li> <li>UN Economic<br/>Commission for Latin</li> </ul>          |
|                                                                   | <ol> <li>Number of<br/>people injured</li> </ol>                     | Number                  |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
|                                                                   | <ol><li>Number of people affected</li></ol>                          | Number                  |                                                                                                                                                                                                                                                                                    | America and the<br>Caribbean (UNECLAC)<br>Handbook for Estimating<br>the Socio-economic and                                                                                             |

Note: Gray cells are empty

Disasters The United Nations Office for Disaster Risk Reduction (UNISDR)

**Environmental Effects of** 

# **Tier 3 Statistics on 2020 RCES**

Tier 3 includes environment statistics which are either of less priority or require significant methodological development, so countries are recommended to consider producing them in the long-term.

| Topic                                                | Statistics and Related<br>Information***                                               | Category of<br>measurement | Potential aggregations<br>and scales                                                                                                                                                                  | Methodological guidance                                                                                                            |
|------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Tier 3                                               |                                                                                        |                            |                                                                                                                                                                                                       |                                                                                                                                    |
| Component 1: Environn                                | nental Conditions and Qu                                                               | uality                     |                                                                                                                                                                                                       |                                                                                                                                    |
| Sub-component 1.1:                                   | <b>Physical Conditions</b>                                                             |                            |                                                                                                                                                                                                       |                                                                                                                                    |
| Topic 1.1.3: Geological and geographical information | a. Geological,<br>geographical and<br>geomorphological<br>conditions of<br>terrestrial |                            | <ul> <li>National</li> <li>Yearbook</li> <li>Food and Ag         <ul> <li>Organization</li> <li>United Natio</li> </ul> </li> <li>Center of Int         <ul> <li>Earth Science</li> </ul> </li> </ul> | <ul> <li>Food and Agriculture         Organization of the         United Nations (FAO)</li> <li>Center of International</li> </ul> |
|                                                      | <ol> <li>Area by rock<br/>types</li> </ol>                                             | Area                       |                                                                                                                                                                                                       | Information Network                                                                                                                |
| Topic 1.3.2: Freshwater quality                      | a. Physical and<br>chemical<br>characteristics                                         |                            | <ul><li>By water body</li><li>By watershed/river basin</li><li>By surface or</li></ul>                                                                                                                | <ul> <li>UNECE Standard<br/>Statistical Classification<br/>of Freshwater Quality</li> </ul>                                        |
|                                                      | Total suspended solids (TSS)                                                           | Concentration              | entration groundwater  By point measurement  By type of water resource                                                                                                                                | for the Maintenance of<br>Aquatic Life (1992)<br>• UNEP GEMS-Water                                                                 |

Note: Gray cells are empty

### **GLOSSARY OF TERMS**

- Air Pollutant is any matter found in the atmosphere other than oxygen, nitrogen, water vapor, carbon dioxide, and the inert gases in their natural or normal concentrations that is detrimental to health or the environment, which includes but not limited to smoke, dust, soot, cinders, fly ash, solid particles of any kind, gases, fumes, chemical mists, steam, and radioactive substances (RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- **Air Pollution** is any alteration of the physical, chemical, and biological properties of the atmospheric air or any discharge thereto of any liquid, gaseous, or solid substances that will or is likely to create or to render the air resources of the country harmful, detrimental, or injurious to public health, safety, or welfare or that will adversely affect their utilization for domestic, commercial, industrial agricultural, recreational, or other legitimate purposes (RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- **Ambient** is the environmental surrounding (UN Environment Glossary Updated Web Version 2001).
- **Ambient Air Quality** is the general amount of pollution present in a broad area. It also refers to the atmosphere's average purity as distinguished from discharge measurements taken at the source of pollution (RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- Ambient Air Quality Guideline Value is the concentration of air over specified periods classified as short- and long-term, which is intended to serve as a goal or objective for the protection of health and/or public welfare. The value shall be used for air quality management purposes, such as determining time trends, evaluating stages of deterioration, or enhancing air quality, and in general, used as basis for taking positive action in preventing, controlling, or abating air pollution (RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- Ambient Air Quality Standard is the concentration of an air pollutant which shall not be exceeded in the breathing zone at any time in order to protect public health and public welfare. It is enforceable and must be complied with by the owner or person-in-charge of an industrial operation, process, or trade (Implementing Rules and Regulations of RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- Ambient Concentration is the measure of environmental quality indicating the amount of pollutants found per unit volume in different environmental media (UN Environment Glossary Updated Web Version 2001).
- **Amphibian** is a cold-blooded, smooth-skinned vertebrate capable of living on land and in water, such as frogs, toads, and salamanders (DENR Administrative Order 2009-01).
- **Annual Cropland** is the land cultivated with crops with a growing cycle under one year, which must be newly sown or planted for further production after harvesting (DENR Memorandum Circular 2005-05).
- **Aquaculture** is a fishery operation involving all forms of raising and culturing of fish and other fishery species in fresh, brackish, and marine water areas (PSA-Agricultural Statistics Glossary of Terms online).
- **Aquafarm** is a farming facility used in the culture or propagation of aquatic species including fish, mollusk, crustaceans, and aquatic plants for purposes of rearing and culturing to enhance production (PSA-Agricultural Statistics Glossary of Terms online).
- **Aquatic Resources** include fish, crustaceans, mollusks, shellfish and other aquatic organisms such as sponges and seaweed, as well as aquatic mammals such as whales. Aquatic resources are subject to harvest for commercial reasons and are part of recreational and subsistence fishing activities. Aquatic resources for a given country comprise those resources that are considered to live within the exclusive economic

- zone (EEZ) of a country throughout their lifecycles, both coastal and inland fisheries. Migrating and straddling fish stocks are considered to belong to a given country during the period when those stocks inhabit its EEZ. Aquatic resources may be either cultivated or natural biological resources (UN Framework for the Development of Environment Statistics 2013).
- Area Harvested is the actual area from which harvests are realized. This excludes crop area totally damaged. It may be smaller than area planted. In crop statistics, this applies to temporary crops (PSA- Agricultural Statistics Glossary of Terms online).
- **Area Planted** is the actual physical area planted to a permanent crop. This generally applies to area reported for permanent crops (PSA-Agricultural Statistics Glossary of Terms online).
- Area Source is the source of non-natural air pollution released over a relatively small area that cannot be classified as a point source, such as vehicles and other small fuel combustion engines (UN Glossary of Environment Statistics).
- **Atmosphere** is the mass of air surrounding the earth, composed largely of oxygen and nitrogen (UN Glossary of Environment Statistics).
- Avian or Bird refers warm-blooded, egg-laying vertebrates of the class Aves characterized by feathers and forelimbs modified into wings, such as jungle fowl and wild ducks (DENR Administrative Order 2009-01).
- Backyard Farm is any farm or household raising at least one head of animal or bird and does not qualify as a commercial farm (PSA-Agricultural Statistics Glossary of Terms online).
- Barren Area (Barren) is land not covered by (semi-)natural or artificial cover. It includes sand dunes, riverwash, lahar-laden areas, and rocky or stony areas (DENR Memorandum Circular 2005-05).
- Beneficial Use is the use of the environment or any element or segment thereof conducive to public or private welfare, safety, and health and shall include but not limited to the use of water for domestic, municipal, irrigation, power generation, fisheries, livestock raising, industrial, recreational, and other purposes (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Biochemical Oxygen Demand is dissolved oxygen required by organisms for the aerobic decomposition of organic matter present in water (UN Environment Glossary Updated Web Version 2001).
- Biodiversity (also, Biological Diversity) is the variability among living organisms from all sources such as inter alia, terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part. It includes diversity within species, between species, and of ecosystems (DENR Administrative Order 2005-24).
- Bioethanol Fuel refers to ethanol produced from feedback and other biomass (RA No. 9367 "An Act to Direct the Use of Biofuels, Establishing for this Purpose the Biofuel Program, Appropriating Funds Therefor, and for Other Purposes").
- **Biological Disaster** is an event caused by the exposure of living organisms to germs and toxic substances (Center for Research on the Epidemiology of Disasters).
- Biological Resources are timber resources, aquatic resources, crops, livestock and wild, uncultivated biological resources that are provided by natural or cultivated ecosystems (UN Framework for the Development of Environment Statistics 2013).
- Biomass refers to any organic matter, particularly cellulosic or lignocellulosic matter, which is available on a renewable or recurring basis, including trees, crops and associated residues, plant fiber, poultry litter,

and other animal wastes, industrial wastes, and the biodegradable component of solid wastes (RA No. 9367 "An Act to Direct the Use of Biofuels, Establishing for this Purpose the Biofuel Program, Appropriating Funds Therefor, and for Other Purposes").

- Biomass Resources are non-fossilized, biodegradable organic material originating from naturally occurring or cultured plants, animals and microorganisms, including agricultural products, byproducts and residues such as but not limited to biofuels except corn, soya beans, and rice but including sugarcane and coconut, rice hulls, rice straws, coconut husks and shells, corn cobs, corn stovers, bagasse, biodegradable organic fractions of industrial and municipal wastes that can be used in bioconversion process and other processes, as well as gases and liquids recovered from the decomposition and/or extraction of non-fossilized and biodegradable organic materials (RA No. 9513 "An Act Promoting the Development, Utilization and Commercialization of Renewable Energy Resources and for Other Purposes").
- **Brackishwater Environment** refers to mixed seawater and freshwater and salinity varies with the tide. Examples are estuaries, mangroves, and mouth of rivers where seawater enters during high tide (PSA-Agricultural Statistics Glossary of Terms online).
- Buffalo is popularly known as water buffalo and originated from India, which is used as draft animals and suitable for milk production. It is locally known as carabao (PSA-Agricultural Statistics Glossary of Terms online).
- Buffer Zone is an area outside the boundaries of and immediately adjacent to a designated protected area pursuant to Section 8 of Republic Act No. 7586 that needs special development control in order to avoid or minimize harm to the protected area (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- Built-up Area is an area of intensive use with much of the land covered by structures. It includes cities, towns, villages, strip developments along highways, transportation, power, and communication facilities, and areas occupied by mills, shopping centers, industrial and commercial complexes, and institutions that may be isolated from urban areas in some instances (DENR Memorandum Circular 2005-05).

**Carabao**, see Buffalo

- Carbon Dioxide is a colorless, odorless, and nonpoisonous gas resulting from fossil fuel combustion. It is normally a part of ambient air and produced in the respiration of living organisms (plants and animals) and considered to be the main greenhouse gas contributing to climate change (UN Environment Glossary *Updated Web Version 2001).*
- Carbon Emission is the release of carbon from a source such as but not limited to living organisms, fossil fuels, and volcanic emissions into the atmosphere over a specified area and period of time (FMB Philippine Reference for Forest-related Terms and Definitions).
- Carbon Monoxide is a colorless, odorless, and poisonous gas produced by incomplete fossil fuel combustion. It combines with the hemoglobin of the human beings reducing its oxygen carrying capacity with effects harmful to human beings (UN Environment Glossary Updated Web Version 2001).
- Cattle is the general term for the members of the Bovidae family, wild (Bibos subspecies) or domestic (Bos subspecies). There are two domestic cattle species, Bos taurus or European breeds and Bos indicus or Zebu breeds or oriental domestic cattle (PSA- Agricultural Statistics Glossary of Terms online).
- **Charcoal** is the solid residue consisting mainly of carbon obtained by the destructive distillation of wood in the absence of air (UN Environment Glossary Updated Web Version 2001).

- **Chemical Control Order** is an order that either prohibits, limits, or regulates the use, manufacture, import, export, transport, processing, storage, possession and wholesale of priority chemicals (DENR Administrative Order 2013-22).
- **Climate** is the condition of the atmosphere at a particular location (microclimate) or region over a long period of time. It is the long-term summation of atmospheric elements, such as solar radiation, temperature, humidity, precipitation type (frequency and amount), atmospheric pressure, and wind (speed and direction), and their variations (UN Environment Glossary Updated Web Version 2001).
- Climate Change is a term frequently used in reference to global warming due to greenhouse gas emissions from human activities (UN Environment Glossary Updated Web Version 2001).
- **Climatological Disaster** is an event caused by long-lived/meso- to macro- scale processes (in the spectrum from intraseasonal to multidecadal climate variability) (Center for Research on the Epidemiology of Disasters).
- **Closed Forest** is a formation where trees in the various storeys and the undergrowth cover a high proportion (more than 40%) of the ground and do not have a continuous dense grass layer. It is either managed or unmanaged forest, in advanced state of succession and may have been logged-over one or more times, having kept its characteristics of forest stands, possibly with modified structure and composition (DENR *Memorandum Circular 2005-05).*
- **Coal** is a readily combustible black or brownish-black rock whose composition, including inherent moisture, consists of more than 50% by weight and more than 70% by volume of carbonaceous material. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time (US Energy Information Administration Glossary).
- **Commercial Farm** is any livestock or poultry farm that satisfies at least one of the conditions herein. For livestock, it has at least 21 heads of adults and zero young; or at least 41 heads of young animals; or at least 10 heads of adults and 22 heads of young. For poultry, it has 500 layers or 1,000 broilers; or 100 layers and 100 broilers, if raised in combination; or 100 head of duck regardless of age (PSA-Agricultural Statistics Glossary of Terms online).
- Commercial Fishing is the catching of fish with the use of fishing boats with a capacity of more than three gross tons for trade, business, or profit beyond subsistence or sports fishing (PSA-Agricultural Statistics Glossary of Terms online).
- Common Name refers to the adopted name of a species widely used in the country. It may be based on an English name (or another foreign name) or a Tagalog name, or derived from the meaning of its scientific name when no local or vernacular name is available (DENR Administrative Order 2007-01).
- **Concentration** is the amount of a chemical in a particular volume or weight of air, water, soil, or other medium (UN Framework Convention on Climate Change Glossary).
- Conservation Status is the sum of influences acting on species that affect its long-term distribution and abundance (BMB 2003 Statistics on Philippine Protected Areas and Wildlife Resources).
- Controlled Dump is the disposal site at which solid waste is deposited in accordance with the minimum prescribed standards of site operation (RA No. 9003 "Ecological Solid Waste Management Act of 2000").
- Corn Production (also, Maize Production) is the quantity of corn produced and actually harvested during the reference period from both crop types (white and yellow). It includes those harvested but damaged, stolen, given away, consumed, given as harvester's share, or reserved, and excludes those produced but

- not harvested due to low price, lack of demand, and force majeure or fortuitous events (PSA-Agricultural Statistics Glossary of Terms online).
- Criteria Pollutants are pollutants for which National Ambient Air Quality Standards exist. The criteria pollutants include ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, sulfates, hydrogen sulfide, and particulate matter with a diameter of 10 microns or less (Implementing Rules and Regulation of RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- Critically Endangered Species refers to a species or subspecies that is facing extremely high risk of extinction in the wild in the immediate future (RA No. 9147 "An Act Providing for the Conservation and Protection of Wildlife Resources and Their Habitats, Appropriating Funds Therefor and For Other Purposes").
- Crops are plants or agricultural produce grown at a large scale for food or other economic purposes, such as clothes or livestock fodder (UN Framework for the Development of Environment Statistics 2013).
- Cultivated Biological Resources are animal resources yielding repeat products and tree, crop, and plant resources yielding repeat products whose natural growth and regeneration are under the direct control, responsibility, and management of an institutional unit (UN System of Environmental-Economic Accounting 2012 Central Framework).
- **Depletion (in physical terms)** is the decrease in the quantity of the stock of a natural resource over an accounting period that is due to the extraction of the natural resource by economic units occurring at a level greater than that of regeneration (UN System of Environmental-Economic Accounting 2012 Central Framework).
- Deposit is the concentration of a solid commodity in the subsoil. The equivalent term for petroleum is accumulation (UN Framework Classification for Fossil Energy and Mineral Resources).
- **Desertification** is land degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors, including climatic variations and human activities (UN Convention to Combat Desertification).
- Direct GHG emissions are emissions from sources that are owned or controlled by the reporting entity (Greenhouse Gas Protocol).
- **Disaster** is an unforeseen and often sudden event that causes great damage, destruction and human suffering. It is a serious disruption of the functioning of a community or a society involving widespread human, material, economic, or environmental losses and impacts, which exceeds the ability of the affected community or society to cope using its own resources (UN Framework for the Development of Environment Statistics 2013; National Disaster Risk Reduction and Management Council).
- **Disposals** of Waste are waste elimination techniques comprising landfills, containment, underground disposal, dumping at sea, and all other disposal methods (UN Environment Glossary Updated Web Version 2001).
- Dissolved Oxygen is the amount of gaseous oxygen (O2) actually present in water expressed in terms either of its presence in the volume of water (milligrams of O<sub>2</sub> per liter) or of its share in saturated water (percentage) (UN Environment Glossary Updated Web Version 2001).
- Drinking Water Standards are standards that determine the quality of drinking water in the context of prevailing environmental, social, economic, and cultural conditions with reference to the presence of suspended matter, excess salts, unpleasant taste, and all harmful microbes. Meeting of those standards does not necessarily imply purity (UN Environment Glossary Updated Web Version 2001).
- **Dump** is a site used to dispose of solid wastes without environmental controls (UN Environment Glossary Updated Web Version 2001).

- **Economic Loss** is an indicator that assesses the impacts of natural extreme events and disasters. It is measured in terms of currency and can be seen in damages to buildings and transportation networks, loss of revenue for businesses, and loss of crops, among other material indicators (UN Framework for the Development of Environment Statistics 2013).
- **Ecosystem** is a system in which the interaction between different organisms and their environment generates a cyclic interchange of materials and energy (UN Environment Glossary Updated Web Version 2001).
- **Effluents** are discharges from known source which are passed into a body of water or land, or wastewater flowing out of a manufacturing plant, industrial plant including domestic, commercial, and recreational facilities (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- **Electricity** is a form of energy characterized by the presence and motion of elementary charged particles generated by friction, induction, or chemical change (US Energy Information Administration Glossary).
- **Emission** is any air contaminant, pollutant, gas stream, or unwanted sound from a known source which is passed into the atmosphere (RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- **Emission Factor** is the ratio between the amount of pollution generated and the amount of a given raw material processed. The term may also refer to the ratio between the emissions generated and the outputs of production processes (UN Environment Glossary Updated Web Version 2001).
- **Emission Inventory** is the listing by source, type, and quantity of pollutants actually or potentially discharged. Such an inventory is used to establish and put forth emission standards (UN Environment Glossary *Updated Web Version 2001).*
- Endangered Species refers to species or subspecies that is not critically endangered but whose survival in the wild is unlikely if the causal factors continue operating (RA No. 9147 "An Act Providing for the Conservation and Protection of Wildlife Resources and Their Habitats, Appropriating Funds Therefor and For Other Purposes").
- Endemic refers to species or subspecies that is naturally occurring and found only within specific areas in the country (RA No. 9147 "An Act Providing for the Conservation and Protection of Wildlife Resources and Their Habitats, Appropriating Funds Therefor and For Other Purposes").
- **Energy** is the capacity for doing work as measured by the capability of doing work (potential energy) or the conversion of this capability to motion (kinetic energy). Energy has several forms, some of which are easily convertible and can be changed to another form useful for work (US Energy Information Administration Glossary).
- Energy Consumption is the use of energy as a source of heat or power or as a raw material input to a manufacturing process (US Energy Information Administration Glossary).
- **Energy Products** are products that are used (or might be used) as a source of energy. They comprise fuels that are produced/generated by an economic unit (including households) and are used (or might be used) as sources of energy; electricity that is generated by an economic unit (including households); and heat that is generated and sold to third parties by an economic unit (UN System of Environmental-Economic Accounting 2012 Central Framework).
- Energy Sources refer to all solid, liquid and gaseous fuels, electricity, uranium, steam and hot water, and the traditional fuels such as fuelwood, charcoal, and vegetal and animal wastes (UN Environment Glossary *Updated Web Version 2001).*

- **Energy Transformation** is the process where the movement of part or all of the energy content of a product entering a process to one or more different products leaving the process (e.g., coking coal to coke, crude oil to petroleum products, and heavy fuel oil to electricity) (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- **Environment** is the totality of all the external conditions affecting the life, development, and survival of an organism (UN Environment Glossary Updated Web Version 2001).
- Environmental Health covers aspects of human health and diseases that are determined by factors in the environment. It also refers to the theory and practice of assessing and controlling factors in the environment that can potentially affect health (World Health Organization).
- **Erosion** refers to wearing away of the land by running water, rainfall, wind, ice, or other geological agents, including such processes as detachment, entrainment, suspension, transportation, and mass movement. Geologically, it is defined as the process that slowly shapes hillsides allowing the formation of soil cover from the weathering of rocks and from alluvial and colluvial deposits. It is often intensified by landclearing human activities related to farming, resident, and industrial development and has an effect increasing run- offs, decline of arable layers, siltation in lakes, lagoons, and oceans (UN Environment Glossary Updated Web Version 2001).
- **Evaporation** is the process whereby liquid water is converted to water vapor (vaporization) and removed from the evaporating surface (vapor removal) (FAO Corporate Document Repository).
- **Evapotranspiration** is the combined loss of water by evaporation from the soil or surface water and transpiration from plants and animals (UN Environment Glossary Updated Web Version 2001).
- **Exploration** means searching or prospecting for mineral resources by geological, geochemical, and/or geophysical surveys, remote sensing, test pitting, trenching, drilling, shaft sinking, tunneling, or any other means for the purpose of determining their existence, extent, quality, and quantity, and the feasibility of mining them for profit (DENR Administrative Order 2010-21).
- Exports of Energy Products refer to all fuel and other energy products leaving the national territory with the exception that exports exclude the quantities of fuels delivered for use by merchant (including passenger) ships and civil aircraft of all nationalities during international transport of goods and passengers (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- **Extractions** are reductions in stock due to the physical removal or harvest of an environmental asset through a process of production (UN System of Environmental-Economic Accounting 2012 Central Framework).
- Fallow refers to woody vegetation resulting from the clearing of natural forest for shifting to agriculture. It is an intermediate class between forest and non-forest land uses. Part of the area, which is not under cultivation, may have the appearance of a secondary forest (DENR Memorandum Circular 2005-05).
- **Farm** is a parcel of land having an aggregate area of at least 1,000 square meters devoted to crops; or any area regardless of size raising at least 10 heads of large animals such as cattle, horse, carabao, among others regardless of kind; or any area regardless of size raising at least 20 heads of small animals such as hog, goat, sheep, among others, regardless of age and kind; or any area regardless of size with at least 100 heads of poultry regardless of age and kind; or a combination of land areas and animals raised, which amounts to at least 10 agricultural units. A farm is classified as either commercial or backyard (PSA-Agricultural Statistics Glossary of Terms online).

**Fauna** are all species of animals in a given area (FMB Philippine Reference for Forest-related Terms and Definitions).

- Fertilizer is any substance, solid or liquid, natural or synthetic, single or combination of materials that is applied to the soil or on the plant to provide one or more of the essential elements to improve plant nutrition, growth, yield, or quality, or for promoting a chemical change that enhances plant nutrition and growth (PSA-Agricultural Statistics Glossary of Terms online).
- **Fish Cage** is a stationary or floating fish enclosure of synthetic net wire/bamboo screen or other materials set in the form of inverted mosquito net ("hapa" type) with or without cover with all sides either tied to poles staked to the water bottom or with anchored floats for aquaculture purposes (PSA-Agricultural Statistics Glossary of Terms online).
- Fisheries refers to all activities relating to the act of or business of fishing, culturing, preserving, processing, marketing, developing, conserving, and managing aquatic resources and the fishery areas including the privilege to fish or take aquatic resources thereof (RA No. 8550 "An Act Providing for the Development, Management and Conservation of the Fisheries and Aquatic Resources, Integrating All Laws Pertinent *Thereto, and for Other Purposes"*).
- Fishing refers to the taking of the fishery species from their wild state or habitat with or without the use of fishing vessels (Fisheries Statistics of the Philippines 2010-2012 Technical Notes).
- **Fish Pen** is an artificial enclosure constructed within a body of water for culturing fish, fishery/aquatic resources. It is made up of bamboo poles closely arranged in an enclosure with wooden material, screen or nylon netting to prevent escape of fish (PSA-Bureau of Agricultural Statistics Glossary of Terms online).
- **Fishpond** is a land-based facility enclosed with earthen or stone material to impound water for growing fish. It also refers to a land-based type of aquafarm or a body of water (artificial or natural) where fish and other aquatic products are cultured, raised or cultivated under controlled conditions (RA No. 8550 "An Act Providing for the Development, Management and Conservation of the Fisheries and Aquatic Resources, Integrating All Laws Pertinent Thereto, and for Other Purposes"; PSA-Agricultural Statistics Glossary of Terms online).
- Flora refers to all species of plants found in a given area, including ferns, lycopods, and mosses (FMB Philippine *Reference for Forest-related Terms and Definitions).*
- Forest is a land with an area of more than 0.5 hectare and tree crown cover (or equivalent stocking level) of more than 10%. The trees should be able to reach a minimum height of five meters at maturity in situ. It consists of either closed forest formations where trees of various storeys and undergrowth cover a high proportion of the ground or open forest formations with a continuous vegetation cover in which tree crown cover exceeds 10%. Young natural stands and all plantations established for forestry purposes, which have yet to reach a crown density of more than 10% or tree height of five meters are included under forest. These are normally forming part of the forest area, which are temporarily unstocked as a result of human intervention or natural causes but which are expected to revert to forest. It includes forest nurseries and seed orchards that constitute an integral part of the forest; forest roads, cleared tracts, firebreaks and other small open areas; forest within protected areas; windbreaks and shelter belts of trees with an area of more than 0.5 hectare and width of more than 20 meters; and plantations primarily used for forestry purposes, including rubber wood plantations. It also includes bamboo, palm, and fern formations (except coconut and oil palm) (DENR Memorandum Circular 2005-05).
- Forest Cover refers to natural and manmade forests, including forests within wetlands and built- up areas (DENR 2008 Compendium of Basic ENR Statistics for Operations and Management).
- Forest Disturbance refers to any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources and substrate availability of the physical environment (DENR 2008 Compendium of Basic ENR Statistics for Operations and Management).

- Framework for the Development of Environment Statistics is a conceptual framework that assists in the development, coordination, and organization of environment statistics and related socioeconomic and demographic statistics. It was developed by the United Nations Statistics Division in 1984, and is based on stress-response principles of environmental impacts (UN Environment Glossary Updated Web Version 2001).
- Freshwater refers to water containing less than 500ppm dissolved common salt, sodium chloride, such as that in groundwater, rivers, ponds, and lakes (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Freshwater Environment refers to water without salt or marine origin. Examples of freshwater environment are Laguna de Bay, Taal Lake, Candaba Swamps, Liguasan Marsh and rivers, canals, dams and paddy fields and rice fields (PSA-Agricultural Statistics Glossary of Terms online).
- Game Refuge and Bird Sanctuary refer to a forest land designated for the protection of game animals, birds, and fish and closed to hunting and fishing in order that the excess population may flow and restock surrounding areas (PD No. 1559 "Further Amending PD No. 705, Otherwise Known as the Revised Forestry Code of the Philippines").
- **Geophysical Disaster** is an event that originated from the solid earth, such as earthquakes (Center for Research on the Epidemiology of Disasters).
- **Geothermal Energy** is hot water or steam extracted from geothermal reservoirs in the earth's crust. Water or steam extracted from geothermal reservoirs can be used for geothermal heat pumps, water heating, or electricity generation (US Energy Information Administration Glossary).
- Geothermal Resources are mineral resources, classified as renewable energy resource, in the form of all products of geothermal processes embracing indigenous steam, hot water, and hot brines; steam and other gases, hot water and hot brines resulting from water, gas, or other fluids artificially introduced into geothermal formations; heat or associated energy found in geothermal formations; and any byproducts derived from them (RA No. 9513 "An Act Promoting the Development, Utilization and Commercialization of Renewable Energy Resources and for Other Purposes").
- Goat is an animal of genus Capra, family Capridae, compromising of various agile, hollow horned ruminants closely related to the sheep (PSA-Agricultural Statistics Glossary of Terms online).
- **Grassland** is an area predominantly vegetated with grasses such as Imperata, Themeda, and Saccharum spp., among others (DENR Memorandum Circular 2005-05).
- **Greenhouse Gases** are gases such as carbon dioxide, methane, and oxides of nitrogen, chlorofluorocarbons, and others that can potentially or reasonably be expected to induce global warming (RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- Groundwater means subsurface water that occurs beneath a water table in soils and rocks or in geological formations (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Hazardous Waste Treatment comprises two categories, which can be distinguished as physical hazardous waste treatment—an approach including phase separation such as through lagooning, filtration or centrifugation, and solidification into hard material allowing for landfill disposal—and thermal hazardous waste treatment—high temperature oxidation of wastes that converts them into gases and solid residues (UN Environment Glossary Updated Web Version 2001).

Hazardous Wastes are substances that are without any safe commercial, industrial, agricultural, or economic usage and are shipped, transported, or brought from the country of origin for dumping or disposal into or in transit through any part of the territory of the Philippines. Hazardous wastes also refers to hazardous substances that are byproducts, side- products, process residues, spent reaction media, contaminated plant or equipment, and other substances from manufacturing operations, and to consumer discards of manufactured products.

It also refers to any waste or combination of wastes of solid, liquid, contained gaseous, or semisolid form, which cause or contribute to an increase in mortality or an increase in serious irreversible or incapacitating reversible illness, taking into account toxicity of such waste, its persistence and degradability in nature, its potential for accumulation or concentration in tissue, and other factors that may otherwise cause or contribute to adverse acute or chronic effects on the health of persons or organism (Implementing Rules and Regulations of RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes"; RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").

**Hog** is a domesticated swine (*PSA-Agricultural Statistics Glossary of Terms online*).

- Household Waste is a waste material usually generated in the residential environment. Waste with similar characteristics may be generated in other economic activities and can thus be treated and disposed of together with household waste (UN Environment Glossary Updated Web Version 2001).
- **Human Habitat** is the totality of the human community or more precisely, as human population that resides in a settlement, physical elements (e.g., shelter and infrastructure), services (e.g., water, sanitation, waste disposal, transport), and the exposure of humans to potentially deleterious environmental conditions (UN Framework for the Development of Environment Statistics 2013).
- **Hydrocarbons** are compounds of hydrogen and carbon in various combinations that are present in petroleum products and natural gas. Some hydrocarbons are major air pollutants, some may be carcinogenic, and others contribute to photochemical smog (UN Environment Glossary Updated Web Version 2001).
- **Hydroelectric Power** is the use of flowing water to produce electrical energy (US Energy Information Administration Glossary).
- Hydrological Disaster is an event caused by deviations in the normal water cycle and or overflow of bodies of water caused by wind setup (Center for Research on the Epidemiology of Disasters).
- Imports of Energy Products are all the fuel and other energy products entering the national territory. Goods simply being transported through a country (goods in transit) and goods temporarily admitted are excluded, but reimports, which are domestic goods exported but subsequently readmitted, are included. The bunkering of fuel outside the reference territory by national merchant ships and civil aircraft engaged in international travel is excluded from imports (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- Indicated Mineral Resource refers to that part of a mineral resource for which tonnage, densities, shape, physical characteristics, grade, and mineral content can be estimated with a reasonable level of confidence. It is based on exploration, sampling, and testing information gathered through appropriate techniques from locations as outcrops, trenches, pits, workings, and drill holes. The locations are too widely or inappropriately spaced to confirm geological and or grade continuity but are spaced closely enough for continuity to be assumed (DENR Administrative Order 2010-09).
- **Indirect GHG emissions** are emissions that are a consequence of the activities of the reporting entity but have occurred at sources owned or controlled by another entity (Greenhouse Gas Protocol).

- Industrial Wastes are any solid, semisolid, or liquid waste material with no commercial value released by a manufacturing or processing plant other than excluded material (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- **Inferred Mineral Resource** refers to that part of a mineral resource for which tonnage, grade, and mineral content can be estimated with low level of confidence. It is inferred from geological evidence, sampling, and assumed but not verified geological and/or grade continuity. It is based on information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes, which may be limited or of uncertain quality and reliability (DENR Administrative Order 2010-09).
- Inland Municipal Fishing is the catching of fish, crustaceans, mollusks, and all other aquatic animals and plants in inland waters like lakes, rivers, dams, and marshes using simple gears and fishing boats some of which are nonmotorized with a capacity of less than or equal to three gross tons. It also refers to fishing that does not require the use of fishing boats (PSA-Agricultural Statistics Glossary of Terms online).
- Inland Waters are bodies of water surrounded by land, such as rivers, lakes, streams, mudflats, ponds and fishponds, dams, and reservoirs) (DENR Memorandum Circular 2005-05).
- Irrigated Palay is a palay crop that requires standing water for its normal growth and is not confined to lowland but also to high places where paddies are built for planting rice. It requires irrigation water made available through artificial means such as gravity, force, and power pumps (PSA-Bureau of Agricultural Statistics Glossary of Terms online).
- **Kaingin** is a portion of the forest land, whether occupied or not, that is subjected to shifting and or permanent slash-and-burn cultivation having little or no provision to prevent soil erosion (PD No. 1559 "Further Amending PD No. 705, Otherwise Known as the Revised Forestry Code of the Philippines").
- Land is a resource both manmade and natural, found on the surface, below, and above the ground. It includes inland waters and the air therein (FMB Philippine Reference for Forest-related Terms and Definitions).
- Land Cover refers to the observed physical and biological cover of the Earth's surface and includes natural vegetation, abiotic (nonliving) surfaces, and inland water bodies such as rivers, lakes, and reservoirs (UN System of Environmental-Economic Accounting 2012 Central Framework).
- Lake is an inland body of water, an expanded part of a river, a reservoir formed by a dam, or a lake basin intermittently or formerly covered by water (RA No. 8550 "An Act Providing for the Development, Management and Conservation of the Fisheries and Aquatic Resources, Integrating All Laws Pertinent Thereto, and for Other Purposes").
- **Leachate** is a liquid produced when wastes undergo decomposition and when water percolates through solid waste undergoing decomposition. It is a contaminated liquid that contains dissolved and suspended materials (RA No. 9003 "Ecological Solid Waste Management Act of 2000").
- Livestock refers to farm animals kept or raised for consumption, work, or leisure. In general, poultry is separated as a distinct group of farm animals. For purposes of censuses and surveys, livestock covers only those that are tended and raised by an operator (PSA- Agricultural Statistics Glossary of Terms online).
- Major Crops are the top 20 crops in the Philippines other than palay and corn, which collectively account for more than 60% of the total crop production. These include coconut, sugarcane, banana, pineapple, coffee, mango, tobacco, abaca, peanut, mongo, cassava, cacao, sweet potato, tomato, garlic, onion, cabbage, eggplant, calamansi, and rubber (PSA-Agricultural Statistics Glossary of Terms online).
- Mammal refers to any of the various warm-blooded vertebrates of the class Mammalia, characterized with hair covering on the skin and milk-producing mammary glands (among females) for nourishing the young

- Mangrove Forest is a forested wetland growing along tidal mudflats and along shallow water coastal areas extending inland along rivers, streams, and their tributaries where the water is generally brackish and composed mainly of Rhizopora, Bruguiera, Ceriops, Avicenia, Aegiceras, and Nipa species (DENR *Memorandum Circular 2005-05).*
- Marshland is a natural area usually dominated by grass-like plants such as cat tails and sedges, which are rooted in bottom sediments but emerge above the surface of the water. It contains emergence vegetation and usually develops in zones progressing from terrestrial habitat to open water (DENR Memorandum Circular 2005-05).
- Material Recovery Facility is a solid waste transfer station or sorting station, drop-off center, a composting facility, and a recycling facility (RA No. 9003 "Ecological Solid Waste Management Act of 2000").
- Measured Mineral Resource refers to that part of a mineral resource for which tonnage, densities, shape, physical characteristics, grade, and mineral content can be estimated with a high level of confidence. It is based on detailed and reliable exploration, sampling, and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes. The locations are spaced closely enough to confirm geological and grade continuity (DENR Administrative Order 2010-09).
- Metallic Mineral is a mineral having a brilliant appearance and guite opaque to light, usually giving a black or very dark streak, and from which a metallic element/component can be extracted/utilized for profit (DENR Administrative Order 2010-21).
- **Meteorological Disaster** is an event caused by short-lived/small to meso-scale processes (in the spectrum from minutes to days) (Center for Research on the Epidemiology of Disasters).
- Methane (chemical formula: CH<sub>2</sub>) is a colorless, nonpoisonous, and flammable gaseous hydrocarbon created by anaerobic decomposition of organic compounds. It is a potent greenhouse gas (UN Environment Glossary Updated Web Version 2001).
- **Migrant** is a species that winter in the Philippines on a seasonal basis or those that cross transboundaries on several states (BMB 2003 Statistics on Philippine Protected Areas and Wildlife Resources).
- Mineral Occurrence is the indication of mineralization that is worthy of further investigation. The term mineral occurrence does not imply any measure of volume or tonnage, grade or quality and is thus not part of a mineral resource (UN Framework Classification for Fossil Energy and Mineral Resources).
- Mineral Products are materials derived from ores, minerals, or rocks and prepared into a marketable state by mineral processing (DENR Administrative Order 2010-21).
- Mineral Resource refers to the concentration or occurrence of material of intrinsic economic interest in or on the Earth's crust in such form, quality, and quantity that there are reasonable prospects for eventual economic extraction. The location, quantity, grade, geological characteristics, and continuity of a mineral resource are known, estimated, or interpreted from specific geological evidence, sampling, and knowledge. Mineral resource is subdivided, in order of increasing geological confidence, into inferred, indicated, and measured categories (DENR Administrative Order 2010-09).
- Minerals are all naturally-occurring inorganic substances in solid, liquid, gas, or any intermediate state excluding energy materials such as coal, petroleum, natural gas, radioactive materials, and geothermal energy (DENR Administrative Order 2010-21).

- **Mobile Source** is any vehicle or machine propelled by or through oxidation or reduction reactions, including combustion of carbon-based or other fuel, constructed and operated principally for the conveyance of persons or the transportation of property or goods, which emit air pollutants as a reaction product (Implementing Rules and Regulation of RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- **Monitoring** is the continuous or frequent standardized measurement and observation of the environment (air, water, land/soil, and biota) often used for warning and control (UN Environment Glossary Updated Web Version 2001).
- Monitoring Station is a facility used to measure emissions or ambient concentrations of pollutants (UN Environment Glossary Updated Web Version 2001).
- Multilateral Environment Agreement is a generic term for treaties, conventions, protocols, and other binding instruments related to the environment. It covers a wider geographic scope extending beyond instruments that are agreed upon between two states (United Nations).
- Municipal Fishing refers to fishing within municipal waters using fishing vessels of three gross tons or less. It also refers to fishing that does not require the use of fishing vessels (PSA-Agricultural Statistics Glossary of Terms online).
- Municipal Waters include not only streams, lakes, inland bodies of water, and tidal waters within the municipality, which are not included within the protected areas as defined under Republic Act No. 7586 (or NIPAS Law), public forests, timber lands, forest reserves, or fishery reserves, but also marine waters included between two lines drawn perpendicular to the general coastline from points where the boundary lines of the municipality touch the sea at low tide and a third line parallel with the general coastline including offshore islands and 15 kilometers from such coastline (PSA-Agricultural Statistics Glossary of Terms online).
- National Integrated Protected Areas System (NIPAS) refers to the classification and administration of all designated protected areas to maintain essential ecological processes and life-support systems, to preserve genetic diversity, to ensure sustainable use of resources found therein, and to maintain their natural conditions to the greatest extent possible (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- National Park is a forest reservation essentially of natural wilderness character, which has been withdrawn from settlement, occupancy, or any form of exploitation except in conformity with approved management plan and set aside as such exclusively to conserve the area or preserve the scenery, the natural and historic objects, wild animals and plants therein, and to provide enjoyment of these features in such areas (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- Natural Biological Resources are animals, birds, fish, and plants that yield both once-only and repeat products for which natural growth and or regeneration is not under the direct control, responsibility, and management of institutional units (UN System of Environmental-Economic Accounting 2012 Central Framework).
- **Natural Biotic Area** is an area set aside to allow the way of life of societies living in harmony with the environment to adapt to modern technology at their pace (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- **Natural Disaster** is an event that resulted from natural phenomena such as tropical cyclones and earthquakes

- Natural Gas is a mixture of hydrocarbon compounds and small quantities of non-hydrocarbons, existing in the gaseous phase or in solution with oil in natural underground reservoirs (UN Environment Glossary *Updated Web Version 2001).*
- **Natural Monument (also, Natural Landmark)** is a relatively small area focused on protection of small features to protect or reserve nationally significant natural features on account of their special interest or unique characteristics (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- **Natural Park** is a relatively large area not materially altered by human activity where extractive resource uses are not allowed and maintained to protect outstanding and natural and scenic areas of national or international significance for scientific, educational, and recreational use (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- **Nitrate** is a nitrogen-containing compound that can exist in the atmosphere or as a dissolved gas in water. It may produce harmful effects on humans and animals (UN Environment Glossary Updated Web Version 2001).
- Nitrogen Oxide (chemical formula: NO<sub>2</sub>) is a product of combustion from transportation and stationary sources. It is a major contributor to acid depositions and the formation of ground-level ozone in the troposphere (UN Environment Glossary Updated Web Version 2001).
- **Nitrous Oxide (chemical formula: N<sub>2</sub>O)** is a relatively inert oxide of nitrogen produced as a result of microbial action in the soil, use of fertilizers containing nitrogen, burning of timber, and so forth. This nitrogen compound may contribute to greenhouse and ozone- depleting effects (UN Environment Glossary *Updated Web Version 2001).*
- Nonpoint Sources of Pollution are pollution sources that are diffused and without a single point of origin or not introduced into a receiving stream from a specific outlet. The pollutants are generally carried off the land by stormwater runoff. The commonly used categories for nonpoint sources are agriculture, forestry, urban areas, mining, construction, dams and channels, land disposal, and saltwater intrusion (UN Environment Glossary Updated Web Version 2001).
- Nonmetallic Mineral is a mineral usually having a dull luster, generally light-colored and transmits light, usually giving either colorless or light colored streak from which a nonmetallic element/component can be extracted/utilized for a profit (DENR Administrative Order 2010-21).
- Normal (also, Climatological Normal) is the average value of a meteorological element over any fixed period of years that is recognized as a standard for a country and element concerned. It usually a 30-year period as recommended by the World Meteorological Organization (Department of Science and Technology-PAGASA).
- **Open Dump** is a disposal area wherein the solid wastes are indiscriminately thrown or disposed of without due planning and consideration for environmental and health standards (RA No. 9003 "Ecological Solid Waste Management Act of 2000").
- **Open Forest** refers to formations with discontinuous tree layer with coverage of at least 10% and less than 40%. They are either managed or unmanaged forests in initial state of succession (DENR Memorandum Circular 2005-05).

- Ore Reserve is the economically mineable part of a measured and/or indicated mineral resource. It is subdivided in order of increasing confidence into probable and proved ore reserves (DENR Administrative Order 2010-21).
- Other Land refers to land with tree cover less than 5%. It includes agricultural land, pastures, built-up areas, bare areas, and grasslands (DENR Memorandum Circular 2005-05).
- Other Natural Land refers to land not classified as forest or other wooded land undisturbed by man (DENR Memorandum Circular 2005-05).
- Other Threatened Species refers to a species or subspecies that is not critically endangered, endangered, or vulnerable but is under the threat from adverse factors such as overcollection throughout their range and is likely to move to the vulnerable category in the near future (Implementing Rules and Regulation of RA No. 9147 "An Act Providing for the Conservation and Protection of Wildlife Resources and Their Habitats, Appropriating Funds Therefor and For Other Purposes").
- Other Wildlife Species refers to nonthreatened species that have the tendency to become threatened due to predation and destruction of habitat or other similar causes as may be listed by the Secretary of Environment and Natural Resources upon the recommendation of the National Wildlife Management Committee (DENR Administrative Order 2004-15).
- Other Wooded Land refers to lands either with a crown cover (or equivalent stocking level) of 5- 10% of trees able to reach a height of five meters at maturity or with a crown cover (or equivalent stocking level) of more than 10% not able to reach a height of five meters at maturity such as dwarf or stunted trees or with shrubs or bush cover of more than 10% (DENR Memorandum Circular 2005-05).
- Oyster Farming refers to the cultivation of oysters in suitable water areas by any method for production purposes (Fisheries Statistics of the Philippines 2010-2012 Technical Notes).
- Palay Production (also, Paddy Rice Production) is the quantity of palay produced and actually harvested during the reference period from both ecosystems (irrigated and rainfed). It includes those harvested but damaged, stolen, given away, consumed, given as harvester's share, and reserved and excludes those produced but not harvested due to low price, lack of demand, and force majeure or fortuitous events (PSA-Agricultural Statistics Glossary of Terms online).
- **Particulates** are fine liquid or solid particles, such as dust, smoke, mist, fumes, or smog, found in air or emissions (UN Environment Glossary Updated Web Version 2001).
- Perennial Cropland refers to land cultivated with long term crops that do not have to be replanted for several years after each harvest. Harvested components are not timber but fruits, latex, and other products that do not significantly harm the growth of the planted trees or shrubs; orchards, vineyards and palm plantations, coffee, tea, sisal, banana, abaca, among others (DENR Memorandum Circular 2005-05).
- Persistent Organic Pollutants are chemical substances that persist in the environment, bioaccumulate through the food web, can travel long distances, and pose a risk of causing adverse effects to human health and the environment (DENR Administrative Order 2013-22).
- Pesticides are substances or any mixtures of substances intended for preventing, destroying, or controlling pests, including vectors of human or animal diseases, unwanted species of plants or animals causing harm during or otherwise interfering with the production, processing, storage, transport, or marketing of food, agricultural commodities, wood or wood products, or animals feed stuffs (PSA-Agricultural Statistics Glossary of Terms online).
- **Plantation Forest** refers to forest stands established by planting and or seeding in the process of afforestation or

- reforestation. It may be composed of broadleaved, coniferous, and or mixed forests (DENR Memorandum Circular 2005-05).
- Point Source of Pollution is an anthropogenic source of emissions that is located at an identifiable point in space. It covers stationary sources such as sewage treatment plants, powerplants, other industrial establishments, and similar buildings and premises of small spatial extension (UN Environment Glossary *Updated Web Version 2001).*
- Pollutant is any substance, whether solid, liquid, gaseous, or radioactive, which directly or indirectly alters the quality of any segment of the receiving water body so as to affect or tend to affect adversely any beneficial use thereof; is hazardous or potentially hazardous to health; imparts objectionable odor, temperature change, or physical, chemical, or biological change to any segment of the water body; or is in excess of the allowable limits or concentrations or quality standards specified, or in contravention of the condition, limitation, or restriction prescribed in Republic Act No. 9275 (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Potential Mineral Resource (also, Target Mineral Resource) refers to a mineralization that cannot be classified as mineral resource or ore reserve owing to the insufficiency of data (DENR Administrative Order 2010-09).
- **Priority Chemicals List** is a list of existing and new chemicals that the Department of Environment and Natural Resources has determined to potentially pose unreasonable risk to public health, workplace, and the environment (DENR Administrative Order 2013-22).
- Primary Energy Products are resulting products of primary (energy) production (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- **Primary Production of Energy Products** refers to capture or extraction of fuels or energy from natural energy flows, the biosphere, and natural reserves of fossil fuels within the national territory in a form suitable for use (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- **Probable Ore Reserve** is the economically mineable part of an indicated and in some circumstances a measured mineral resource. It includes diluting materials and allowances for losses, which may occur when the material is mined (DENR Administrative Order 2010-21).
- **Production** is the quantity produced and actually harvested for a particular crop during the reference period. It includes those harvested but damaged, stolen, given away, consumed, given as harvester's share, and reserved. Excluded are those produced but not harvested due to low price, lack of demand, and force majeure or fortuitous events (PSA-Agricultural Statistics Glossary of Terms online).
- **Production of Energy Products** refers to capture, extraction, or manufacture of fuels or energy in forms that are ready for general use (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- Protected Area refers to identified portions of land and water set aside by reason of their unique physical and biological significance, managed to enhance biological diversity and protected against destructive human exploitation (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- Protected Landscapes and Seascapes are areas of national significance that are characterized by the harmonious interaction of man and land while providing opportunities for public enjoyment through the recreation and tourism within the normal lifestyle and economic activity of these areas (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- Proven Ore Reserve is the economically mineable part of a measured mineral resource. It includes diluting

- materials and allowances for losses, which may occur when the material is mined (DENR Administrative Order 2010-21).
- Rainfed Palay is a palay crop that depends solely upon rainfall for its water supply. It is usually planted through transplanting or direct seeding in fields with dikes that retain water. There may be dikes in the field to hold water in the case of lowland-rainfed, or none in the case of upland palay (PSA-Agricultural Statistics Glossary of Terms online).
- Reactive refers to substances that are unstable under normal conditions and readily undergo violent change without detonating, react violently with water and create spontaneously explosive mixtures like toxic gases, vapors, or fumes, and are capable of detonating (DENR Administrative Order 2013-22).
- Renewable Energy Resources are energy resources that do not have an upper limit on the total quantity to be used. Such resources are renewable on a regular basis, and whose renewal rate is relatively rapid to consider availability over an indefinite period of time. These include, among others, biomass, solar, wind, geothermal, ocean energy, and hydropower conforming with internationally accepted norms and standards on dams and other emerging renewable energy technologies (RA No. 9513 "An Act Promoting the Development, Utilization and Commercialization of Renewable Energy Resources and for Other Purposes").
- Reptile refers to any of the various cold-blooded, air breathing vertebrates of the class Reptilia, such as snakes, lizards, crocodiles, turtles, and the like, which have scales or horny plates as external covering (DENR Administrative Order 2009-01).
- **Resident** refers to breed or suspected of breeding in the Philippines normally living there throughout the year (BMB 2003 Statistics on Philippine Protected Areas and Wildlife Resources).
- Resource Reserve is an extensive and relatively isolated and uninhabited area normally with difficult access designated as such to protect natural resources of the area for future use and prevent or contain development activities that could affect the resource pending the establishment of objectives that are based upon appropriate knowledge and planning (RA No. 7586 "An Act Providing for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- Rice Fish Culture is an integrated farming system that involves raising of fish in rice paddies (Fisheries Statistics of the Philippines 2010-2012 Technical Notes).
- **Root Crops** are crops with well-developed underground edible roots. They are classified into tubers and roots. Roots are more starchy and rich in carbohydrates include gabi, ubi, and white potato. Tubers include beets, radish, carrots, and turnips (PSA-Agricultural Statistics Glossary of Terms online).
- Sanitary Landfill is a waste disposal site designed, constructed, operated, and maintained in a manner that exerts engineering control over significant potential environment impacts arising from the development and operation of the facility (RA No. 9003 "Ecological Solid Waste Management Act of 2000").
- **Scientific Name** refers to the formal nomenclature/name of specific plants and animals (BMB 2003 Statistics on Philippine Protected Areas and Wildlife Resources).
- Seafarm Reservoirs refer to small bodies of water with an area of less than 10 kilometres such as small ponds, canals, irrigation canals, and swamps, which can be suitable for culture- based fisheries (Fisheries Statistics of the Philippines 2010-2012 Technical Notes).
- Seawater Environment (also, Marinewater Environment) refers to inshore and open waters and inland seas in which salinity generally exceeds 20% (PSA-Agricultural Statistics Glossary of Terms online).

- **Seaweed Farming** is the cultivation of seaweed in suitable water areas by any method with appropriate intensive care for production in commercial quantities (Fisheries Statistics of the Philippines 2010-2012) Technical Notes).
- Secondary Production of Energy Products refers to manufacture of energy products through the process of transformation of primary fuels or energy (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- **Shrubland** is a land where the dominant woody vegetation are shrubs, which are generally more than 0.5 meter and less than five meters in height in maturity and without a definite crown. The growth habit can be erect, spreading or prostate. The height limits for trees and shrubs should be interpreted with flexibility, particularly the minimum tree and maximum shrub height, which may vary between five and seven meters approximately (DENR Memorandum Circular 2005-05).
- **Solar Energy** is energy derived from solar radiation that can be converted into useful thermal or electrical energy (RA No. 9513 "An Act Promoting the Development, Utilization and Commercialization of Renewable Energy Resources and for Other Purposes").
- Solid Waste is all discarded household, commercial waste, nonhazardous institutional and industrial waste, street sweepings, construction debris, agricultural waste, and other nonhazardous and nontoxic solid waste (RA No. 9003 "Ecological Solid Waste Management Act of 2000").
- Special Wastes refer to household hazardous wastes such as paints, thinners, household batteries, lead-acid batteries, spray canisters, and the like. These include wastes from residential and commercial sources that comprise bulky wastes, consumer electronics, white goods, yard wastes that are collected separately, batteries, oil, and tires. These are usually handled separately from other residential and commercial wastes (DENR Administrative Order 2013-22).
- **Species** refers to the smallest population, which is permanently distinct and distinguishable from all others. It is a primary taxonomic unit (DENR Administrative Order 2007-01).
- **Stationary Source** refers to any building or immobile structure, facility, or installation that emits or may emit any air pollutant (RA No. 8749 "An Act Providing for a Comprehensive Air Pollution Control Policy and for other Purposes").
- **Stock Changes of Energy Products** refer to quantities of energy products that can be held and used to maintain service under conditions where supply and demand are variable in their timing or amount due to normal market fluctuations; and to supplement supply in the case of a supply disruption. These are also defined as the increase (stock build) or decrease (stock draw) in the quantity of stock over the reporting period and are calculated as the difference between the closing and opening stocks (UNSD International Recommendations for Energy Statistics Draft Version 2011).
- **Sulphur Dioxide (chemical formula: SO<sub>2</sub>)** is a heavy, pungent, colorless gas formed primarily by the combustion of fossil fuels. It is harmful to human beings and vegetation, and contributes to the acidity in precipitation (UN Environment Glossary Updated Web Version 2001).
- Surface Water refers to all water, which is open to the atmosphere and subject to surface runoff (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- **Sustainable Yield** is the surplus or excess of animals or plants that may be removed from a population without affecting the capacity of the population to regenerate itself (UN System of Environmental-Economic Accounting 2012 Central Framework).

- **Technological Disaster** is an event that resulted from human intent, negligence, or error, or from faulty or failed technological application (UN Framework for the Development of Environment Statistics 2013).
- Threatened Species is a general term used to denote species or subspecies considered as critically endangered, endangered, vulnerable, or other accepted categories of wildlife whose population is at risk of extinction (RA No. 9147 "An Act Providing for the Conservation and Protection of Wildlife Resources and Their Habitats, Appropriating Funds Therefor and For Other Purposes").
- **Timber Resources** refer to the volume of trees, living and dead, which can still be used for timber or fuel. This includes all trees regardless of diameter or tops of stems. The general proxy that should be considered for determining the volume of timber resources is the volume that is commercially usable (UN Framework for the Development of Environment Statistics 2013).
- **Toxic** refers to substances that when inhaled or ingested or if penetrate the skin may involve acute or chronic health risks, such as carcinogenicity, mutagenicity, or teratogenicity on human or other life forms (DENR Administrative Order 2013-22).
- Toxic Pollutants are materials that contaminate the environment, which cause death, disease and birth defects in the organisms that ingest or absorb them. The quantities and length of exposure necessary to cause these effects can vary widely (UN Environment Glossary Updated Web Version 2001).
- **Toxicity Characteristics Leaching Procedure** is the procedure used to simulate the leaching that a waste will undergo if disposed of in a sanitary landfill. It is applicable to liquid, solid, and multiphase media (DENR Administrative Order 2013-22).
- Treatment, Storage, and Disposal Facilities are the facilities where hazardous wastes are transported, stored, treated, recycled, reprocessed, or disposed of (DENR Administrative Order 2013-22).
- Use of Water for Domestic Purposes refers to the utilization of water for drinking, washing, bathing, cooking, or other household needs, home gardens, and watering of lawns or domestic animals (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- **Use of Water for Fisheries** refers to the utilization of water for the propagation of culture of fish as a commercial enterprise (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Use of Water for Industrial Purposes refers to the utilization of water in factories, industrial plants, and mines, including the use of water as an ingredient of a finished product (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- **Use of Water for Irrigation** refers to the utilization of water for producing agricultural crops (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- **Use of Water for Livestock Raising** refers to the utilization of water for large herds or flocks of animals raised as a commercial enterprise (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Use of Water for Municipal Purposes refers to the utilization of water for supplying water requirements of the community (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- **Use of Water for Power Generation** refers to the utilization of water for producing electrical or mechanical power (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other

- Use of Water for Recreational Purposes refers to the utilization of water for swimming pools, bath houses, boating, water skiing, golf courses, and other similar facilities in resorts and other places of recreation (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Value of Crop Production is derived by multiplying the volume of production by the producer or farmgate price (PSA-Agricultural Statistics Glossary of Terms online).
- Vector Borne Diseases are transmitted by vectors (e.g., insects and arachnids) that carry viruses, bacteria, protozoa and other pathogens, as defined by the World Health Organization. Common vector borne diseases include but are not limited to malaria, dengue fever, yellow fever, and Lyme disease (UN Framework for the Development of Environment Statistics 2013).
- Volatile Organic Compounds are organic chemical compounds that evaporate readily and contribute to air pollution mainly through the production of photochemical oxidants (UN Environment Glossary Updated Web Version 2001).
- **Volume of Crop Production** is expressed in million metric tons. It is the average production per hectare or yield expressed in metric tons (PSA-Agricultural Statistics Glossary of Terms online).
- Volume of Fisheries Production (Commercial, Municipal, and Aquaculture) is the quantity of fish catch, harvested/produced expressed in metric tons (PSA-Agricultural Statistics Glossary of Terms online).
- Vulnerable Species refers to species or subspecies that is not critically endangered or endangered but is under threat from adverse factors throughout their range and is likely to move to the endangered category in the near future (RA No. 9147 "An Act Providing for the Conservation and Protection of Wildlife Resources and Their Habitats, Appropriating Funds Therefor and For Other Purposes").
- Waste refers to any material either solid, liquid, semisolid, contained gas or other forms resulting from industrial, commercial, mining, or agricultural operations, or from community and household activities that is devoid of usage and discarded (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Waste Collection is the collection and transport of waste to the place of treatment or discharge by municipal services or similar institutions, or by public or private corporations, specialized enterprises, or general government. Collection of municipal waste may be selective, that is to say, carried out for a specific type of product, or undifferentiated, in other words, covering all kinds of waste at the same time (UN Environment Glossary Updated Web Version 2001).
- Waste Management includes collection, transport, treatment, and disposal of waste; control, monitoring, and regulation of the production, collection, transport, treatment, and disposal of waste; and prevention of waste production through in-process modifications, reuse, and recycling (UN Environment Glossary Updated Web Version 2001).
- Wastewater refers to waste in liquid state that contains pollutants. It also refers to used water that is typically discharged into the sewage system and contains matter and bacteria in solution or suspension (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes"; UN Glossary of Environment Statistics).
- Water Abstraction is the removal of water from any source, either permanently or temporarily. Minewater and drainage water are included. Water abstractions from groundwater resources are defined as the difference between the total amount of water withdrawn from aguifers and the total amount charged artificially or injected into aquifers (UN Environment Glossary Updated Web Version 2001).

- Water Body refers to both natural and man-made bodies of fresh, brackish, and saline waters, and includes but is not limited to aquifers, groundwater, springs, creeks, streams, rivers, ponds, lagoons, water reservoirs, lakes, bays, estuarine, and coastal and marine waters. These do not refer to those constructed, developed, and used purposely as water treatment facilities and or water storage for recycling and reuse that are integral to process industry or manufacturing (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Water Pollution is any alteration of the physical, chemical, biological, or radiological properties of a water body resulting in the impairment of its purity or quality (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes").
- Water Quality is the set of characteristics of water, which defines its use in terms of physical, chemical, biological, bacteriological, or radiological characteristics by which the acceptability of water is evaluated (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and for Other Purposes")
- Water Quality Criteria define specific levels of water quality desired for identified uses, including drinking, recreation, farming, fish production, propagation of other aguatic life, and agricultural and industrial processes (UN Environment Glossary Updated Web Version 2001).
- Water Quality Guideline is the level for a water constituent or numerical values of physical, chemical, biological, and bacteriological or radiological parameters, which are used to classify water resources and their use, which does not result in significant health risk and which are not intended for direct enforcement but only for water quality management purposes, such as determining time trends, evaluating stages of deterioration, or enhancing the water quality, and as basis for taking positive action in preventing, controlling, or abating water pollution (RA No. 9275 "An Act Providing for a Comprehensive Water Quality Management and For Other Purposes").
- Water Resource is fresh and brackish water, regardless of their quality, in inland water bodies that include surface water, groundwater, and soil water (UN Framework for the Development of Environment Statistics 2013).
- Watershed is a land area drained by a stream or fixed body of water and its tributaries having a common outlet for surface-runoff (PD No. 1559 "Further Amending PD No. 705, Otherwise Known as the Revised Forestry Code of the Philippines").
- Watershed Reservation is a forest land reservation established to protect or improve the conditions of the water yield thereof or reduce sedimentation (PD No. 1559 "Further Amending PD No. 705, Otherwise Known as the Revised Forestry Code of the Philippines").
- Water-related Diseases and Conditions result from microorganisms in the water humans drink as defined by the World Health Organization. They include but are not limited to diarrheal disease, gastroenteritis, and water borne parasite infections (UN Framework for the Development of Environment Statistics 2013).
- **Weather** is a day-to-day or sometimes even instantaneous change of atmospheric conditions over a given place or area. In contrast, climate encompasses the statistical ensemble of all weather conditions during a long period of time over that place or area. Atmospheric conditions are measured by the meteorological parameters of air temperature, barometric pressure, wind velocity, humidity, clouds, and precipitation (UN Environment Glossary Updated Web Version 2001).
- White Corn is corn grown and used mainly for human consumption and for manufacture of corn byproducts such as cornstarch, corn oil, syrup, dextrins, glucose, and gluten (PSA- Agricultural Statistics Glossary of Terms online).

- Wildlife Sanctuary comprises an area that assures the natural conditions necessary to protect nationally significant species, groups of species, biotic communities, or physical features of the environment where these may require specific human manipulation for perpetuation (RA No. 7586 "An Act Providing" for the Establishment and Management of National Integrated Protected Areas System, Defining Its Scope and Coverage, and For Other Purposes").
- Wind Energy is energy that can be derived from wind that is converted into useful electrical or mechanical energy (RA No. 9513 "An Act Promoting the Development, Utilization and Commercialization of Renewable Energy Resources and for Other Purposes").
- Wooded Grassland is an area predominantly vegetated with grasses, such as Imperata, Themeda, and Saccharum, and where trees cover between 5% to 10% of the area and their height may reach five meters at maturity (DENR Memorandum Circular 2005-05).
- Yellow Corn is corn mainly used as feed grains and includes corn types other than the white variety (PSA-Agricultural Statistics Glossary of Terms online).

### References

- Centre Classification. for Research on the Epidemiology of Disasters. https://www.emdat.be/classification
- Philippine Statistics Authority (2018). 2016 Compendium of Philippine Environment Statistics. http://www.psa.gov.ph/environment/compendium/cpes/2016%20Compendium%20of%20 Philippine%20Environment%20Statistics.
- United Nations (2013). Framework for the Development of Environment Statistics 2013. Sales No. 14.XVII.9. Available from https://unstats.un.org/unsd/environment/FDES/FDES-2015-supporting-tools/FDES.pdf.
- United Nations. Sustainable Development Knowledge Platform. Retrieved from https://sustainabledevelopment.un.org/

